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Outline

• Grounded Semantics
• The symbol grounding problem and what grounding is

• Vision-language models (VLMs)
• Visual-semantic embeddings and CLIP
• Generative vision-language models
• Tasks and limitations of VLMs
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Meaning in the Real World

My favourite fruit is apple. 
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Experience Grounds Language

• Bisk et al. (2020):

We posit that the present success of representation learning approaches trained 
on large, text - only corpora requires the parallel tradition of research on the 
broader physical and social context of language to address the deeper 
questions of communication. 

4[Bisk et al. 2020. Experience Grounds Language. In : EMNLP]



Grounded Semantics

• Meanings demonstrated from other sources of data in addition to the language 
systems.
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Distributional Semantics

A bottle of tezgüino  is on the table.
Everybody likes tezgüino .
Don’t have tezgüino  before you drive.
We make tezgüino  out of corn.

Visually Grounded Semantics

tezgüino  = 

[Figure credit: Alejandro Linares Garcia]



The Symbol Grounding Problem (Harnad, 1990)

• Symbol → meaning: how to make sense of symbols?

• Practical implication: enable the reliably meaningful  interaction between 
language models and humans/physical world.

6
[Bender et al. 2021. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? In: ACM 
FAccT; Figure source: https://freesvg.org]

Stochastic parrots or semantic comprehension?

Still under debate…

But we all agree -- external source of meaning 
(e.g., data from another modality) better implies 
comprehension.

https://freesvg.org/


Taxonomy of Grounding

• Grounding can be categorized into 
• A: referential grounding
• B: sensorimotor grounding 
• C: relational grounding
• D: communicative grounding
• E: epistemic grounding

• Chai et al. (2018)
• A, B, C, E: semantic (static) grounding
• D: communicative (dynamic) grounding
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[Mollo and Millière. 2023. The Vector Grounding Problem]



Recap: Text-Only Language Models

• Two popular types of text-only (ungrounded) language models:
• Autoregressive models (e.g., GPT; Radford et al., 2018) – better for generation

• Masked language models (e.g., BERT; Devlin et al., 2019) – better for feature extraction

• Incorporating visual signals leads to two families of vision-language models:
• BERT → Joint visual semantic embeddings.
• GPT → Generative vision-language models.
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Joint Visual-Semantic Embedding Space

Idea: encode visual and textual information into a shared space.

Embedding: vector space.

10

Design a loss function to 
“align” the two vector spaces.

There is a cat.
Text Encoder

(Neural Network)

Image Encoder
(Neural Network)



Joint Visual-Semantic Embedding Space: Dataset

Training data: images and their text descriptions.

Example: Microsoft COCO (Lin et al., 2014) collects 80K images of common 
objects and their captions.
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https://cocodataset.org/#home


Visual Encoders

Convert an image to a fixed-dimensional vector representation.
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Joint Visual-Semantic Embedding Space: Objective

Core idea: Matched image-caption pair should be closer than mismatched pairs in 
the embedding space.

“Triplet-Based Hinge Loss”
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There is a cat. There is an apple.

“margin”model parameter

[Kiros et al. 2014. Unifying visual-semantic embeddings with multimodal neural language models.]

enumerate over 
dataset



“Hinge” Loss
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Properties of the Joint Space

Images and text are close in a good joint embedding space if they are 
semantically related.

Example applications: 

• Bidirectional image-caption retrieval, e.g., Google image search. 

• Image captioning

Text in the training data can be at any level of granularity (words, phrases, 
sentences, paragraph, documents, etc.).
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Contrastive Language-Image Pretraining (CLIP)

16
[Figure: Radford et al. 2021. Learning transferable visual models from natural language supervision]



CLIP Objective: “Classifying for the True Label”

• Image-to-text retrieval: given a pool of text, model the probability of choosing 
the correct text; and vice versa.
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text pool
𝑛 × 𝑑-dimensional features

image pool
𝑛 × 𝑑-dimensional features

There is a cat.  𝑇𝑖
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Recap: Generative Autoregressive Language Models
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cute/beautiful/naughty/…

The         cat           is           very

Text-only language models: predicting the next token conditioned on the history.



Extending to Vision-Language Models (VLMs)

20

How about representing images as “tokens”?

… …

… …

…

Visual “Tokens”

…

Textual Tokens
The  cat  is  very

cute

visual features: a continuous valued tensor

[Liu et al. 2023. Visual instruction tuning. In : NeurIPS.]



Generative VLM: Training Objective

Loss function only calculated on textual positions.

In practice, each visual token correspond to an image patch.

Visual encoders use patches to improve representation quality.

Training all involved parameters via backpropagation and gradient descent. 
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Towards Encoding Everything in the World

22[Lu et al. 2024. Unified - IO 2: Scaling autoregressive multimodal models with vision, language audio and 
action. In: CVPR.]
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Finer-Grained Vision-Language Tasks

• Object retrieval (assuming all objects’ bounding boxes are given).
• Cognitive plausibility: recognizing objects are very easy for humans (in fact, 5-month-old 

infants; Baillargeon et al., 1985).
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Finer-Grained Vision-Language Tasks

• Multimodal coreference resolution (w/o assuming bounding boxes)
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Finer-Grained Vision-Language Tasks
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• Phrase grounding: mapping phrases to objects in the image.

• Dense captioning (reverse): write a short description for each detected object.



Limitations of Current VLMs

• Lack of physical knowledge, and the neural architecture makes it hard to 
incorporate the knowledge.

27[Sarkar et al. 2024. Shadows don’t lie and lines can’t bend! Generative models don’t know projective 
geometry… for now. In:  CVPR.]



Limitations of Current VLMs
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The tree is behind the car.

The tree is to the right of the car.

The tree is in front of the car.

The car is to the left of the tree.

• Poor in recognizing spatial relations.

[Zhang et al. 2025. Do vision - language models represent space and how? Evaluating spatial frame of 
reference under ambiguities. In: ICLR]



Limitations of Current VLMs
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Lack of cultural diversity representation.

[Bhatia et al. 2024. From Local Concepts to Universals: Evaluating the Multicultural Understanding of 
Vision - Language Models. In: EMNLP]



Analyzing Internals of VLMs

30[Sheta et al. 2025. From Behavioral Performance to Internal Competence: Interpreting Vision - Language 
Models with VLM - Lens. In: EMNLP Systems Demonstraton]

https://github.com/compling-wat/vlm-lens 

https://github.com/compling-wat/vlm-lens
https://github.com/compling-wat/vlm-lens
https://github.com/compling-wat/vlm-lens
https://github.com/compling-wat/vlm-lens
https://github.com/compling-wat/vlm-lens


Next

• Assignment 2 will be released on Friday

• Victor takes over the lectures on pretraining language models

31
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