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Outline

• Constituency grammar
• Constituency test
• Context-free grammars and probabilistic context-free grammars

• A pointer to dependency grammar
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Phrase Structures/Constituency Grammar

Constituency grammars focus on the constituent relation.

Informally: Sentences have hierarchical structures.

• A sentence is made up of two pieces:
• Subject, typically a noun phrase (NP)
• Predicate, typically a verb phrase (VP)

• NPs and VPs are made up of pieces: 
• a cat = (a + cat)
• walked to the park = (walk + (to + (the + school) ) )
• Each parenthesized phrase is a constituent in the constituent parse.
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What makes a group of words a constituent?

Constituent: a group of words that functions as a single unit. 

Linguists (try to) determine constituents via constituency tests.
A constituency test follows some rules to construct a new sentence, focusing on the 
constituent candidate of interests.
If the constructed sentence looks good (to native speakers), we find some evidence about 
constituency.

Consider this sentence: Drunks could put off the customers. 
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Constituency Test: Coordination

Drunks could put off the customers.

• Coordinate the candidate constituent with something else. 
• Drunks could [put off the customers] and sing. 
• Drunks could put off [the customers] and the neighbors. 
• Drunks [could] and [would] put off the customers. 
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Constituency Test: Topicalization

Drunks could put off the customers.

• Moving the candidate constituent to the front.
Modal adverbs can be added to improve naturalness. 
• … and [the customers], drunks certainly could put off.
• * … and [customers], drunks could certainly put off the.
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Constituency Test: Deletion

Drunks could put off the customers.

• Delete the span of interest. Word orders can be changed to improve 
naturalness. 
• Drunks could put off the customers [in the bar].
• * Drunks could put off the customers [in the] bar.
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Constituency Test: Substitution

Drunks could put off the customers.

• Substitute the candidate constituent with the appropriate proform 
(pronoun/proverb/etc.). Slight word order adjustment is allowed to improve 
naturalness.
• Drunks could [do so = put off the customers].
• Drunks could put [them = the customers] off. 
• * Drunks could put the [them = customers] off. 
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Constituency Parsing as Bracketing

• Brackets: which spans of words are the constituents in a sentence?

• Sentence: the man walked to the park

• Bracketing: ((the man) (walked (to (the park))))

• The brackets can be translated into trees
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the man walked to the park



Labeled Bracketing / Tree

There are categories associated with constituents

(S (NP the man) (VP walked (PP to (NP the park))))
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the man walked to the park

S

NP

NP

VP

PP

Key:
S = sentence
NP = noun phrase
VP = verb phrase
PP = prepositional phrase



Labeled Bracketing / Tree
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the man walked to the park

S

NP

NP

VP

PP

DT NN VBD      IN    DT    NN preterminals

nonterminals

terminals



Penn Treebank Tagset (Pre-Terminals)

• Marcus et al. (1993): 40K WSJ sentences annotated by linguistic experts. 
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https://aclanthology.org/J93-2004/
https://aclanthology.org/J93-2004/


Penn Treebank Non-Terminal Set

• Marcus et al. (1993): 40K WSJ sentences annotated by linguistic experts. 
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https://aclanthology.org/J93-2004/
https://aclanthology.org/J93-2004/


Head of a Constituent

Head of a constituent is the most responsible/important word for the constituent 
label

Which word makes the cat an NP?
• Cat

Which word makes walked to the park a VP?
• Walked

We’ll see how this connects to dependency grammar on the last slides.
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Syntactic Ambiguities
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Time flies like an arrow.                               Fruit flies like a banana.



NLP Task: Constituency Parsing

• Given a sentence, output its constituency parse.

• Widely studies task with a rich history.

• Most studies are based on the Penn Treebank.
(Treebank = corpus of annotated parse trees)
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Constituency Parsing within General Formulation
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Modeling: define score functionInference: solve arg max

Learning: choose parameter

      : sentence
      : constituent parse tree



Constituency Parsing: Modeling
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Modeling: define score function

• The score of a tree is defined by the sum of constituent scores



Constituency Parsing: Modeling and Learning

Each span score can be modeled with a neural network.

Training objective (Kitaev and Klein, 2018): let the collection of the true spans 
have the highest accumulated span scores among all parses.

How do we calculate this?
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Constituency Parsing: Inference
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Inference: solve arg max

• Let’s first assume     is a binary unlabeled parse tree.
(We’ll see any tree can be converted into binary without loss of geneality)
• Each node is either a terminal node or the parent of two other nodes.
• There is one root node.



Constituency Parsing: Inference
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• Each node is either a terminal node or the parent of two other nodes
• There must be a constituent whose children are two terminal nodes.
             The maximum sum of subtree scores if [ℓ, 𝑟] is a constituent.



The (Simplified) CKY Algorithm
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             The maximum sum of subtree scores if [ℓ, 𝑟] is a constituent.
             The maximum possible sum of subtree scores if the sentence is 
             fully parsed.

Edge case: 𝑓𝑖,𝑖 = 0.

Introduced by Cocke, Younger and Kasami independently in 1960-1970s.



Context-Free Grammar (CFG)

A generative way to describe constituency parsing.

• A CFG defines some “rewrite rules” to rewrite nonterminals as other 
nonterminals or terminals

S → NP  VP
“S goes to NP  VP”

NP → DT  NN
VP → VBD  PP

PP → IN  NP
NN → man
DT → the
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Context-Free Grammar (CFG)

A sequence of rewrites corresponds to a bracketing (induces a hierarchical tree 
structure).

24

the      man    walked    to    the   park

S

NP

NP

VP

PP

DT NN VBD      IN    DT    NN

S → NP  VP

NP → DT  NN

VP → VBD PP

DT → the



Why Context-Free?

A rule to rewrite NP does not depend on the context of that NP.

The left-hand side (LHS) of a rule is only a single non-terminal (without any other 
context).
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the      man    walked    to    the   park

S

NP

NP

VP

PP

DT NN VBD      IN    DT    NN

S → NP  VP

NP → DT  NN

VP → VBD PP

DT → the



Probabilistic Context-Free Grammar (PCFG)

• Assign probabilities to rewrite rules:
NP → DT  NN 0.5
NP → NNS  0.3
NP → NP  PP 0.2

• Probabilities must sum to 1 for each left-hand side nonterminal.
• Given a sentence 𝑠 and its tree 𝑇, the probability of generating 𝑠 with rules 𝑇 in 

grammar 𝒢 is 𝑃 𝑠, 𝑇; 𝒢 = ς𝑟∈𝑇 𝑝(𝑟), where 𝑟 denotes a rule.
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same nonterminal can be on both left and right sides



PCFG: Learning

Given a treebank, what is the MAP estimation of the PCFG?

• A PCFG assigns probabilities to 
• Sequences of rewrite operations that terminate in terminals---this sequence implies the 

natural-language “yield”.
• Bracketings of sentences.
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CKY with PCFG Formalism
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• Find the max-probability tree for a sentence

rules applied in generating the parse tree



CKY with PCFG Formalism
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SLP: Chapter 18

:  the maximum possible log probability that words within range [ℓ, 𝑟] 
are the outcome of a nonterminal label 𝑏.

Edge case: set the appropriate 𝑓𝑖,𝑖,ℓ = 0 when word 𝑖 could have label ℓ, 
and otherwise −∞.
See SLP: Chapter 18 for a running example.

Rules to 
rewrite 𝑏

midpoint for 
splitting

https://web.stanford.edu/~jurafsky/slp3/18.pdf


Inside Algorithm
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• Find the probability for generating a sequence from a certain non-terminal 
(counting all possible trees).

Rules to 
rewrite 𝑏

midpoint for 
splitting



The Chomsky Normal Form (CNF)

• For any free-form PCFG, there exists an equivalent PCFG in which each 
nonterminal has zero or two nonterminal children, or it directly goes to a 
terminal.

• Trees satisfying the latter conditions are said to be in the Chomsky normal form.
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A → B C D    0.5
A → B C    0.5

A → B  C-D    0.5
A → B  C   0.5
C-D → C  D  1.0

added dummy node



From Constituency to Dependency
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heads have bold outline

e.g., VP is head of S -> NP VP

from Noah Smith



From Constituency to Dependency
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Propagate lexical heads up the 
tree

from Noah Smith



From Constituency to Dependency
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Remove nonlexical parts

from Noah Smith



From Constituency to Dependency
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Merge redundant nodes
This is the dependency parse tree

from Noah Smith



Dependency Parses

• Directly model the relation between words.

• See SLP: Chapter 19 for more details. 
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https://web.stanford.edu/~jurafsky/slp3/19.pdf


Next

• Multimodal language models
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