
CS 489/698: Introduction to Natural Language Processing

Lecture 7: Syntax

Instructor: Freda Shi
fhs@uwaterloo.ca

February 9th, 2026

mailto:fhs@uwaterloo.ca

Outline

• Constituency grammar
• Constituency test
• Context-free grammars and probabilistic context-free grammars

• A pointer to dependency grammar

2

Phrase Structures/Constituency Grammar

Constituency grammars focus on the constituent relation.

Informally: Sentences have hierarchical structures.

• A sentence is made up of two pieces:
• Subject, typically a noun phrase (NP)
• Predicate, typically a verb phrase (VP)

• NPs and VPs are made up of pieces:
• a cat = (a + cat)
• walked to the park = (walk + (to + (the + school)))
• Each parenthesized phrase is a constituent in the constituent parse.

3

What makes a group of words a constituent?

Constituent: a group of words that functions as a single unit.

Linguists (try to) determine constituents via constituency tests.
A constituency test follows some rules to construct a new sentence, focusing on the
constituent candidate of interests.
If the constructed sentence looks good (to native speakers), we find some evidence about
constituency.

Consider this sentence: Drunks could put off the customers.

4

Constituency Test: Coordination

Drunks could put off the customers.

• Coordinate the candidate constituent with something else.
• Drunks could [put off the customers] and sing.
• Drunks could put off [the customers] and the neighbors.
• Drunks [could] and [would] put off the customers.

5

Constituency Test: Topicalization

Drunks could put off the customers.

• Moving the candidate constituent to the front.
Modal adverbs can be added to improve naturalness.
• … and [the customers], drunks certainly could put off.
• * … and [customers], drunks could certainly put off the.

6

Constituency Test: Deletion

Drunks could put off the customers.

• Delete the span of interest. Word orders can be changed to improve
naturalness.
• Drunks could put off the customers [in the bar].
• * Drunks could put off the customers [in the] bar.

7

Constituency Test: Substitution

Drunks could put off the customers.

• Substitute the candidate constituent with the appropriate proform
(pronoun/proverb/etc.). Slight word order adjustment is allowed to improve
naturalness.
• Drunks could [do so = put off the customers].
• Drunks could put [them = the customers] off.
• * Drunks could put the [them = customers] off.

8

Constituency Parsing as Bracketing

• Brackets: which spans of words are the constituents in a sentence?

• Sentence: the man walked to the park

• Bracketing: ((the man) (walked (to (the park))))

• The brackets can be translated into trees

9

the man walked to the park

Labeled Bracketing / Tree

There are categories associated with constituents

(S (NP the man) (VP walked (PP to (NP the park))))

10

the man walked to the park

S

NP

NP

VP

PP

Key:
S = sentence
NP = noun phrase
VP = verb phrase
PP = prepositional phrase

Labeled Bracketing / Tree

11

the man walked to the park

S

NP

NP

VP

PP

DT NN VBD IN DT NN preterminals

nonterminals

terminals

Penn Treebank Tagset (Pre-Terminals)

• Marcus et al. (1993): 40K WSJ sentences annotated by linguistic experts.

12

https://aclanthology.org/J93-2004/
https://aclanthology.org/J93-2004/

Penn Treebank Non-Terminal Set

• Marcus et al. (1993): 40K WSJ sentences annotated by linguistic experts.

13

https://aclanthology.org/J93-2004/
https://aclanthology.org/J93-2004/

Head of a Constituent

Head of a constituent is the most responsible/important word for the constituent
label

Which word makes the cat an NP?
• Cat

Which word makes walked to the park a VP?
• Walked

We’ll see how this connects to dependency grammar on the last slides.

14

Syntactic Ambiguities

15

Time flies like an arrow. Fruit flies like a banana.

NLP Task: Constituency Parsing

• Given a sentence, output its constituency parse.

• Widely studies task with a rich history.

• Most studies are based on the Penn Treebank.
(Treebank = corpus of annotated parse trees)

16

Constituency Parsing within General Formulation

17

Modeling: define score functionInference: solve arg max

Learning: choose parameter

 : sentence
 : constituent parse tree

Constituency Parsing: Modeling

18

Modeling: define score function

• The score of a tree is defined by the sum of constituent scores

Constituency Parsing: Modeling and Learning

Each span score can be modeled with a neural network.

Training objective (Kitaev and Klein, 2018): let the collection of the true spans
have the highest accumulated span scores among all parses.

How do we calculate this?
19

Constituency Parsing: Inference

20

Inference: solve arg max

• Let’s first assume is a binary unlabeled parse tree.
(We’ll see any tree can be converted into binary without loss of geneality)
• Each node is either a terminal node or the parent of two other nodes.
• There is one root node.

Constituency Parsing: Inference

21

• Each node is either a terminal node or the parent of two other nodes
• There must be a constituent whose children are two terminal nodes.
 The maximum sum of subtree scores if [ℓ, 𝑟] is a constituent.

The (Simplified) CKY Algorithm

22

 The maximum sum of subtree scores if [ℓ, 𝑟] is a constituent.
 The maximum possible sum of subtree scores if the sentence is
 fully parsed.

Edge case: 𝑓𝑖,𝑖 = 0.

Introduced by Cocke, Younger and Kasami independently in 1960-1970s.

Context-Free Grammar (CFG)

A generative way to describe constituency parsing.

• A CFG defines some “rewrite rules” to rewrite nonterminals as other
nonterminals or terminals

S → NP VP
“S goes to NP VP”

NP → DT NN
VP → VBD PP

PP → IN NP
NN → man
DT → the

23

Context-Free Grammar (CFG)

A sequence of rewrites corresponds to a bracketing (induces a hierarchical tree
structure).

24

the man walked to the park

S

NP

NP

VP

PP

DT NN VBD IN DT NN

S → NP VP

NP → DT NN

VP → VBD PP

DT → the

Why Context-Free?

A rule to rewrite NP does not depend on the context of that NP.

The left-hand side (LHS) of a rule is only a single non-terminal (without any other
context).

25

the man walked to the park

S

NP

NP

VP

PP

DT NN VBD IN DT NN

S → NP VP

NP → DT NN

VP → VBD PP

DT → the

Probabilistic Context-Free Grammar (PCFG)

• Assign probabilities to rewrite rules:
NP → DT NN 0.5
NP → NNS 0.3
NP → NP PP 0.2

• Probabilities must sum to 1 for each left-hand side nonterminal.
• Given a sentence 𝑠 and its tree 𝑇, the probability of generating 𝑠 with rules 𝑇 in

grammar 𝒢 is 𝑃 𝑠, 𝑇; 𝒢 = ς𝑟∈𝑇 𝑝(𝑟), where 𝑟 denotes a rule.

26

same nonterminal can be on both left and right sides

PCFG: Learning

Given a treebank, what is the MAP estimation of the PCFG?

• A PCFG assigns probabilities to
• Sequences of rewrite operations that terminate in terminals---this sequence implies the

natural-language “yield”.
• Bracketings of sentences.

27

CKY with PCFG Formalism

28

• Find the max-probability tree for a sentence

rules applied in generating the parse tree

CKY with PCFG Formalism

29

SLP: Chapter 18

: the maximum possible log probability that words within range [ℓ, 𝑟]
are the outcome of a nonterminal label 𝑏.

Edge case: set the appropriate 𝑓𝑖,𝑖,ℓ = 0 when word 𝑖 could have label ℓ,
and otherwise −∞.
See SLP: Chapter 18 for a running example.

Rules to
rewrite 𝑏

midpoint for
splitting

https://web.stanford.edu/~jurafsky/slp3/18.pdf

Inside Algorithm

30

• Find the probability for generating a sequence from a certain non-terminal
(counting all possible trees).

Rules to
rewrite 𝑏

midpoint for
splitting

The Chomsky Normal Form (CNF)

• For any free-form PCFG, there exists an equivalent PCFG in which each
nonterminal has zero or two nonterminal children, or it directly goes to a
terminal.

• Trees satisfying the latter conditions are said to be in the Chomsky normal form.

31

A → B C D 0.5
A → B C 0.5

A → B C-D 0.5
A → B C 0.5
C-D → C D 1.0

added dummy node

From Constituency to Dependency

32

heads have bold outline

e.g., VP is head of S -> NP VP

from Noah Smith

From Constituency to Dependency

33

Propagate lexical heads up the
tree

from Noah Smith

From Constituency to Dependency

34

Remove nonlexical parts

from Noah Smith

From Constituency to Dependency

35

Merge redundant nodes
This is the dependency parse tree

from Noah Smith

Dependency Parses

• Directly model the relation between words.

• See SLP: Chapter 19 for more details.

36

https://web.stanford.edu/~jurafsky/slp3/19.pdf

Next

• Multimodal language models

37

	Default Section
	Slide 1: CS 489/698: Introduction to Natural Language Processing Lecture 7: Syntax
	Slide 2: Outline

	constituent
	Slide 3: Phrase Structures/Constituency Grammar
	Slide 4: What makes a group of words a constituent?
	Slide 5: Constituency Test: Coordination
	Slide 6: Constituency Test: Topicalization
	Slide 7: Constituency Test: Deletion
	Slide 8: Constituency Test: Substitution
	Slide 9: Constituency Parsing as Bracketing
	Slide 10: Labeled Bracketing / Tree
	Slide 11: Labeled Bracketing / Tree
	Slide 12: Penn Treebank Tagset (Pre-Terminals)
	Slide 13: Penn Treebank Non-Terminal Set
	Slide 14: Head of a Constituent
	Slide 15: Syntactic Ambiguities

	c-parsing
	Slide 16: NLP Task: Constituency Parsing
	Slide 17: Constituency Parsing within General Formulation
	Slide 18: Constituency Parsing: Modeling
	Slide 19: Constituency Parsing: Modeling and Learning
	Slide 20: Constituency Parsing: Inference
	Slide 21: Constituency Parsing: Inference
	Slide 22: The (Simplified) CKY Algorithm

	CFG
	Slide 23: Context-Free Grammar (CFG)
	Slide 24: Context-Free Grammar (CFG)
	Slide 25: Why Context-Free?
	Slide 26: Probabilistic Context-Free Grammar (PCFG)
	Slide 27: PCFG: Learning
	Slide 28: CKY with PCFG Formalism
	Slide 29: CKY with PCFG Formalism
	Slide 30: Inside Algorithm
	Slide 31: The Chomsky Normal Form (CNF)
	Slide 32: From Constituency to Dependency
	Slide 33: From Constituency to Dependency
	Slide 34: From Constituency to Dependency
	Slide 35: From Constituency to Dependency
	Slide 36: Dependency Parses

	next
	Slide 37: Next

