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Outline: Neural Language Modeling

• Neural language modeling

• Probing neural language models
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Recap: Language Modeling as Classification

This is just a probabilistic classification problem!

We can use any tools from the previous lectures: linear model with features, 
neural networks, etc.
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Neural N-Gram Language Models
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[Src: Bengio et al., 2003]



Neural Trigram Language Model
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Given two previous words, compute probability distribution over possible 
next words

Input is concatenation of vectors (embeddings) of previous two words:



Neural Trigram Language Model
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Output is a vector      containing probabilities of all possible next words:

…



Neural Trigram Language Model
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To get     , do matrix multiplication of parameter matrix        and input, then 
“softmax” transformation

“fully-connected layer”



Neural Trigram Language Model
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Trigram vs. Neural Trigram LMs  𝑃 𝑥 𝑥′, 𝑥′′
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• Trigram language model
• separate parameters for every 

combination of 𝑥, 𝑥′, 𝑥′′

• so, approx. 𝑉 3 parameters
• # parameters is exponential in n-

gram size
• most parameters are zero
• even with smoothing, many 

parameters can remain zero

• Neural trigram language model
– only has  𝒪 𝑑 𝑉  parameters
– 𝑑 can be chosen to scale                 

# parameters up or down
– # parameters linear in n-gram size
– (almost) no parameters are zero
– no explicit smoothing, though 

smoothing done implicitly via  
distributed representations



Removing N-Gram Constraints
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[Src: Bengio et al., 2003]



RNN Language Models
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Hidden state is a function of 
previous hidden state and 
current input.

Same weights at each state.

I             have           a             cat



RNN Language Model
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𝑾 𝑾 𝑾

I          have           a            cat

have           a            cat



Transformer Language Models
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A token “attends” to all previous tokens.

Use         as feature to predict the next token.
Note: feature is more complicated in real practice (see Lecture 5). 



Language models encode knowledge about language

The pretraining-finetuning paradigm: Language modeling, as the pretraining task, 
helps encode knowledge.

The knowledge helps downstream tasks.
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cute/beautiful/naughty/…

The         cat           is           very



Masked Language Models

Motivation: learning useful representations of text.
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[Src: https://www.sbert.net/examples/sentence_transformer/unsupervised_learning/MLM/README.html ]

https://www.sbert.net/examples/sentence_transformer/unsupervised_learning/MLM/README.html


Mased Language Models
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A token “attends” to all context tokens.

Replace token at position 𝑖 with a placeholder [MASK].
Use         as feature to predict token at position 𝑖.



Some Important Details of LMs

https://wandb.ai/site/

https://huggingface.co/learn/llm-course/en/chapter7/6

• The importance of the held-out data.

• AdamW (Kingma & Ba, 2015; Loshchilov & Hutter) has become the go-to 
optimizer instead of vanilla gradient descent. 

• 1 × 10−4 could be a default learning rate for AdamW.

• Monitor your training loss through time (by printing it out or using loggers like 
weights & biases; https://wandb.ai/site/).

Check out the HuggingFace Tutorial on training language models: 
https://huggingface.co/learn/llm-course/en/chapter7/6 
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https://wandb.ai/site/
https://huggingface.co/learn/llm-course/en/chapter7/6


Probing

What is encoded in a trained neural language model?

Empirical answer: linguistic probe (Ettinger et al., 2016).

Take a fixed model as the “frozen” feature extractor, train a lightweight model 
(probe, usually linear model or MLP) to predict labels.

Frozen: the base model never gets updated when training the lightweight model.
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Probing Syntax (Part-of-Speech Tags)
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cute/beautiful/naughty/…

The         cat           is           very

MLP Adv.
Label

Probing dataset: supervised classification.



Confounding

Q: Does above-chance performance on held out data mean the model encodes 
part-of-speech knowledge?

A: Not necessarily – the model might just encodes word identity, and the probe 
learns to group them together. 

Solution (control tasks; Hewitt and Liang, 2019): draw conclusion iff. performance 
on main task is significantly better than that on control task.
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Syntax: Constituency

Sentence: the cat is cute

Bracketing: ((the cat) (is cute))

Tree:

Task: given any span of words -- is it a constituent?
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Probing Syntax (Constituency)
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cute/beautiful/naughty/…

The         cat           is           very

MLP 0/1
Label

Pooling is required as candidate constituents 
may be of different lengths but MLP could 
only take a fixed dimensional vector.



Syntax: Constituent Labels

Sentence: the cat is cute

Bracketing: ((the cat) (is cute))

Tree:

Task: given a constituent, what’s the label?
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Constituent Labels: Syntactic Substitutability
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the man
John
the first boss I ever had

S

NP VP

walked to the park
fell asleep
is here



Probing Syntax (Constituency Labels)
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cute/beautiful/naughty/…

The         cat           is           very

MLP NP/VP/…
Label

Pooling is required to accommodate the 
variable length of constituents.



More Tasks

• Does an LM encode numeracy?

• Does an LM “know” if two words refer to the same identity (coreference 
resolution)?

• Does an LM encode sentence-level information, e.g., topic?

• Does an LM encode knowledge about common sense?

…

BERTology: studying the internals of the BERT model.
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Rethinking Probing: Any Issues?

Take a fixed model as the “frozen” feature extractor, train a lightweight model 
(probe, usually linear model or MLP) to predict labels.

A poor performance may come from:

• The information is not encoded in the model under investigation.

• The information is encoded but not effectively used by the probe.

• The dataset for probe training does not effectively represent the information.

(Belinkov, 2022)
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Probing%20Classifiers:%20Promises,%20Shortcomings,%20and%20Advances
Probing%20Classifiers:%20Promises,%20Shortcomings,%20and%20Advances


Next

• Basic Syntax: What forms a constituent?

• Context-Free Grammars and Probabilistic Context-Free Grammars
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