
CS 489/698: Introduction to Natural Language Processing

Lecture 5: Neural Networks – Common Architectures

Instructor: Freda Shi
fhs@uwaterloo.ca

January 19th, 2026

mailto:fhs@uwaterloo.ca

Recap: Multi-Layer Perceptron

2

…

…

…

Recap: Simple Neural Classifier with BoW Feature

3

…

This Lecture: Common Neural Architectures

• Convolutional neural networks

• Recurrent neural networks

• Recursive neural networks

• Transformers

4

…

Better features?

Convolutional Neural Networks

Introduced for vision tasks; also used in NLP to extract feature vectors.

5

Convolutional Neural Networks

6

1 + 3 + 5 + 6 + 7 + 9 = 31

From 2D to 1D: Overview

7

Kernel/Filter

8

• Start from word embeddings

• Take dot product between filter and (stretched) word embeddings

parameters/kernel

Kernel/Filter

9

• Start from word embeddings

• Take dot product between filter and (stretched) word embeddings

parameters/kernel

Kernel/Filter

10

• Start from word embeddings

• Take dot product between filter and (stretched) word embeddings

parameters/kernel

Kernel/Filter

11

• What about a kernel/filter with a different size?

Pooling

12

• Each kernel/filter extracts one type of features

• However, a kernel’s output size depends on sentence length
A fixed dimensional vector is desirable for MLP inputs

• Solution: mean pooling/max pooling converts a vector to a scalar

• Final feature: concatenating pooling results of all filters

pooling

Summary: Convolutional Neural Networks for NLP

13

• Word order matters
Example (kernel size = 2):
a cat drinks milk → (a cat), (cat drinks), (drinks milk)
a milk drinks cat → (a milk), (milk drinks), (drinks cat)

• An n-gram “matches” with a kernel when they have high dot product.

Drawbacks?

• Cannot capture long-term dependency.

• Often used for character-level processing: filters look at character n-grams.

Recurrent Neural Networks (RNNs)

14

• Idea: apply the same transformation to tokens in time order

Recurrent Neural Networks

15

• Gradient update for

• Suppose is the representation passed to the classifier

We can easily calculate

• What about ?

An important issue of simple RNNs

• Absolute value of entries grow/vanish exponentially w.r.t. sequence length.

This motivates the development of more advanced RNN architectures.

16

The Long Short-Term Memory Networks (LSTMs)

17

Designed to tackle the gradient vanishing problem
[Hochreiter and Schmidhuber, 1997]

• Forget gate:

• Input gate:

• Cell:

• Update:

• Output gate:

• Hidden state:

Idea: keep entries in ෤𝐜𝑡 and 𝐡𝑡 in the range of −1, 1 .
[Figure credit: Chris Olah]

Gated Recurrent Units

Fewer parameters and generally works quite well.

• Update gate:

• Reset gate:

18

RNN: Practical Approaches

• Gradient clip: gradient sometimes goes very large even with LSTMs.
Empirical solution: After calculating gradients, require the 𝐿2 norm to be at most
𝐶 (set by hyperparameters).

• At time step 𝑡, what matters to 𝐡𝑡 is mostly 𝐱𝑡′ where 𝑡′is close to 𝑡.
[Khandelwal et al., ACL 2018]

• Bidirectional modeling typically results in more powerful features.

19

Recursive Neural Networks

20

• Run constituency parser on sentence, and construct vector recursively

• All nodes share the same set of parameters [Socher et al., 2011&2013]

Recursive Neural Networks

21

• Tree LSTMs typically work well.
(slight modification of LSTM cells needed)

Recursive Neural Networks

• Tree LSTMs typically work well.
(slight modification of LSTM cells needed)

• Recursive neural networks with left-branching trees are basically equivalent to
recurrent neural networks.

• Syntactically meaningful parse trees are not necessary for good
representations: balanced trees work well (or even better) for most tasks.
[Shi et al., EMNLP 2018]

22

Attention

23

• Can be thought of as weighted sum; each token receives a weight

• From (unweighted) bag of words to (weighted) bag of words
• Each word receives a fixed weight
• Normalize the weights with softmax

Parameterized Attention

24

• Word tokens with the same word type should probably receive different
weights in different sentences

• Implement attention with an MLP (example below)

Self-Attentive RNNs

25

• The last hidden state of RNN could be bad feature. Why?

• At time step 𝑡, what matters to 𝐡𝑡 is mostly 𝐱𝑡′ where 𝑡′is close to 𝑡
[Khandelwal et al., ACL 2018]

Caveat: attention weights over RNN hidden states could be bad indicators
on which token is more important

Trainable parameters,
Jointly trained w/ RNN parameters

Transformers

26

Transformer Encoder

27

• Transformer: attention-based sentence encoding,
and optionally, decoding.

• Idea: every token has “attention” to every other token.

• For sentence with tokens

Trainable
parameters

Transformer Encoder

28

𝑘 × 𝑘 matrix, softmax over
the first dimension

Transformer Encoder

⋅ =

Transformer Encoder

Transformer Encoder

Transformer Encoder

⋅ =

Transformer Encoder

⋯

Transformer Encoder

=

Transformer Encoder

Transformer Encoder: Variance Preservation

36

• What is 𝑑2 for?

• Consider ⟨𝐚, 𝐛⟩: if each entry in both vector is drawn from a distribution
with zero mean and unit variance, what would happen if the
dimensionality grows?

• The variance of dot product grows.

Recap: Variance and Covariance

37

For independent zero-mean, unit-variance random variables and

Recap: Variance and Covariance

38

For independent zero-mean, unit-variance random variables and

If we have 2𝑛 independent zero-mean, unit variance variables

Transformer Encoder

39

The application of 𝑑2 is theoretically motivated.
See also Xavier initialization: initialize a dot product parameter vector

with values drawn from

Positional Encoding

40

This is just complicated bag of words…

Columns of for “a cat”

= permutation of columns of for “cat a”

Positional Encoding

41

• The choice of 𝑛 = 10,000 is somewhat arbitrary, but it’s overall
theoretically motivated: The positional add-𝛿 relation can be represented
by a linear transformation.

• Proof idea: use the addition theorems on trigonometric functions

Applying Positional Encoding

42

• Limitation: only fixed number of positions available

• Another option: learnable positional encoding

Multi-Head Attention

43

• We can parallelize multiple 𝐖𝑘 , 𝐖𝑞 , 𝐖𝑣 with
different random initialization (and hope they
learn different ways to attend tokens.

Stacking Transformer Layers

44

Residual Connection and Normalization

45

• Earlier layers’ output are added to the “vector stream.”

• Normalization: preserve variance.

Next

Language Modeling

46

	Default Section
	Slide 1: CS 489/698: Introduction to Natural Language Processing Lecture 5: Neural Networks – Common Architectures
	Slide 2: Recap: Multi-Layer Perceptron
	Slide 3: Recap: Simple Neural Classifier with BoW Feature
	Slide 4: This Lecture: Common Neural Architectures

	cnn
	Slide 5: Convolutional Neural Networks
	Slide 6: Convolutional Neural Networks
	Slide 7: From 2D to 1D: Overview
	Slide 8: Kernel/Filter
	Slide 9: Kernel/Filter
	Slide 10: Kernel/Filter
	Slide 11: Kernel/Filter
	Slide 12: Pooling
	Slide 13: Summary: Convolutional Neural Networks for NLP

	rnn
	Slide 14: Recurrent Neural Networks (RNNs)
	Slide 15: Recurrent Neural Networks
	Slide 16: An important issue of simple RNNs
	Slide 17: The Long Short-Term Memory Networks (LSTMs)
	Slide 18: Gated Recurrent Units
	Slide 19: RNN: Practical Approaches

	rvnn
	Slide 20: Recursive Neural Networks
	Slide 21: Recursive Neural Networks
	Slide 22: Recursive Neural Networks

	attn & transformers
	Slide 23: Attention
	Slide 24: Parameterized Attention
	Slide 25: Self-Attentive RNNs
	Slide 26: Transformers
	Slide 27: Transformer Encoder
	Slide 28: Transformer Encoder
	Slide 29: Transformer Encoder
	Slide 30: Transformer Encoder
	Slide 31: Transformer Encoder
	Slide 32: Transformer Encoder
	Slide 33: Transformer Encoder
	Slide 34: Transformer Encoder
	Slide 35: Transformer Encoder
	Slide 36: Transformer Encoder: Variance Preservation
	Slide 37: Recap: Variance and Covariance
	Slide 38: Recap: Variance and Covariance
	Slide 39: Transformer Encoder
	Slide 40: Positional Encoding
	Slide 41: Positional Encoding
	Slide 42: Applying Positional Encoding
	Slide 43: Multi-Head Attention
	Slide 44: Stacking Transformer Layers
	Slide 45: Residual Connection and Normalization
	Slide 46: Next

