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Recap: Multi-Layer Perceptron
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Recap: Simple Neural Classifier with BoW Feature
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This Lecture: Common Neural Architectures

 Convolutional neural networks

* Recurrent neural networks
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* Recursive neural networks

* Transformers




Convolutional Neural Networks

Introduced for vision tasks; also used in NLP to extract feature vectors.
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Convolutional Neural Networks
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From 2D to 1D: Overview
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Kernel/Filter

 Start from word embeddings Ep‘a/rametem/kemel

e Take dot product between filter and (stretched) word embeddings
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Kernel/Filter

 Start from word embeddings Ep‘a/rametem/kemel

e Take dot product between filter and (stretched) word embeddings
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Kernel/Filter

* What about a kernel/filter with a different size?
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Pooling

» Each kernel/filter extracts one type of features

« However, a kernel’s output size depends on sentence length
A fixed dimensional vector is desirable for MLP inputs

» Solution: mean pooling/max pooling converts a vector to a scalar

* Final feature: concatenating pooling results of all filters
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Summary: Convolutional Neural Networks for NLP

 Word order matters
Example (kernel size = 2):
a cat drinks milk — (a cat), (cat drinks), (drinks milk)
a milk drinks cat — (a milk), (milk drinks), (drinks cat)

 An n-gram “matches” with a kernel when they have high dot product.

Drawbacks?
* Cannot capture long-term dependency.

« Often used for character-level processing: filters look at character n-grams.
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Recurrent Neural Networks (RNNs)

 |dea: apply the same transformation to tokens in time order

Wixshiei]+b 0 hyyy = Wixeyq; hyl
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Recurrent Neural Networks

» Gradient update forh; = W{x;;h;_1] +b

« Suppose hy is the representation passed to the classifier

We can easily calculate Oloss
Ohy,
810587
« What about OW  Oloss Z Oloss Oh,

Oloss Gloss ohy .
3ht N 8ht+1 8ht
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An important issue of simple RNNs

h, = W{x;;h, 1]+ Db
= Wix;; (W[x¢—1;hy o] +b)] +b

* Absolute value of entries grow/vanish exponentially w.r.t. sequence length.

This motivates the development of more advanced RNN architectures.
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The Long Short-Term Memory Networks (LSTMs)

Designed to tackle the gradient vanishing problem
[Hochreiter and Schmidhuber, 1997]

» Forgetgate: f; =0 (Wylx;;hy—1] + by)

* Inputgate: iy = o (Wy[x¢; he_1] + by)

e Cell: c; = tanh (W [x¢;hy 1] + b,)
 Update: c; = I *xCci1 4 1; * Cy
 Output gate: 0y = 0 (W, |x4;hy_1] + by)

« Hidden state: h; = o; x tanh(c;)

|dea: keep entries in €; and h; in the range of (—1,1).
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[Figure credit: Chris Olah]

17



Gated Recurrent Units

Fewer parameters and generally works quite well.

« Update gate: 2y = 0O (Wz[Xt; ht—l] =+ bz)
e Resetgate: TI't =0 (Wr[Xt; ht—l] =+ bfr)

ht = (1 — Zt) X ht—l + Zt % tanh (W[Xt, Iy x ht—l] -+ b)

18



RNN: Practical Approaches

» Gradient clip: gradient sometimes goes very large even with LSTMs,
Empirical solution: After calculating gradients, require the L, norm to be at most

C (set by hyperparameters).

» At time step t, what matters to h; is mostly x, where t'is close to t.
[Khandelwal et al., ACL 2018]

 Bidirectional modeling typically results in more powerful features.
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Recursive Neural Networks

* Run constituency parser on sentence, and construct vector recursively

* All nodes share the same set of parameters [Socher et al,, 2011&2013]

emb(fell) emb(apart)
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Recursive Neural Networks

* Tree LSTMs typically work well.
(slight modification of LSTM cells needed)

f, = 0 (W[x;;hy_1] + b)) L, = 0 (Welhg; hy | +by)

i, = o (W;[xs;hy_1] + b;) r, =0 (Wrlhgh| +by)

¢; = tanh (W [x;;hy_1] + b,) — ¢, = tanh (W.|hy; h,] +b,.)
c; =1 xci_q +1; xCy c,=1,xcp+r,*xc,.+c,
o, = o (W,[xs;hy 1] + by) o, = o (W,lhy; h,] + b,)

h; = o; x tanh(cy) h,, = o,, * tanh(c,)
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Recursive Neural Networks

* Tree LSTMs typically work well.
(slight modification of LSTM cells needed)

* Recursive neural networks with left-branching trees are basically equivalent to
recurrent neural networks.

» Syntactically meaningful parse trees are not necessary for good
representations: balanced trees work well (or even better) for most tasks.

[Shi et al., EMNLP 2018]
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Attention

e Can be thought of as weighted sum; each token receives a weight

* From (unweighted) bag of words to (weighted) bag of words
« Each word receives a fixed weight

* Normalize the weights with softmax

weight,,

k .
Oy, = softmax;,_ (wezghtwi) = — ——
E . e Wil

/=1

k
X = Z Oy, - emb(w;)
i=1
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Parameterized Attention

 Word tokens with the same word type should probably receive different
weights in different sentences

* Implement attention with an MLP (example below)

_ 1
% = EZ

a(w; | X) = softmax’_, (MLP([emb(w;);X])) € R

k

X = Z&(wi | X) - emb(w;)

1=1
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Self-Attentive RNNs

* The last hidden state of RNN could be bad feature. Why?

« At time step t, what matters to h, is mostly x,» where t'is close to t
[Khandelwal et al., ACL 2018]

a; = softmax_, (MLP(h;)) € R

N

X = Z a;h; Trainable parameters,
; Jointly trained w/ RNN parameters

Caveat: attention weights over RNN hidden states could be bad indicators

on which token is more important
25



Transformers

Attention Is All You Need

Ashish Vaswani®
Google Brain
avaswani@google.com
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University of Toronto Google Brain
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Transformer Encoder

* Transformer: attention-based sentence encoding, Proabities
and optionally, decoding.
 |dea: every token has “attention” to every other token. Gz Nom)
Feed
Forward
r’_.l Add&lNorm |\ m
* For sentence with tokens (w17 ‘e ﬂUk) L 7 J|™
E L (@mb(w ) @mb(w )) E Rdlxk ,—»lAddgNorm] Adr\jaé;:?;m
= 1)5- s k e ]|
L "NT "N]‘ ngdl . L_}_;J
K T kE k R Tralnable Positional q Positional
Encoding ¥ Encoding
Q p— ‘; ‘/ qE ‘;‘/ q d2 >< 1 paramete rS Emg]g;ctiing Err?bu;ggitmg
T f

V=W,E W, d xd SR et
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Transformer Encoder

E = (emb(w1), ..., emb(wy)) € RI¥F
K=W,E W, ecR"" KeR"""
Q=W,E W,cR**" QeR"*"
V=W,E W,eR®*" VR

KT
softmax ( Q> c RI3xFk

Vs

k X k matrix, softmax over
the first dimension
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Transformer Encoder

. K'
E = Vsoftmax ( Q>
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Transformer Encoder
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Transformer Encoder
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Transformer Encoder

E = Vsoftmax
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Transformer Encoder
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Transformer Encoder: Variance Preservation

3 T
E = Vsoftmax (K Q)
V ds

» What s ,/d, for?

* Consider (a, b): if each entry in both vector is drawn from a distribution
with zero mean and unit variance, what would happen if the
dimensionality grows?

* The variance of dot product grows.
softmax([1, —1))
softmax([10, —10])

8808, .1192]
1,2.0612 x 1077




Recap: Variance and Covariance

For independent zero-mean, unit-variance random variables X and Y
VarlXY| = E[X?Y?] — E*[XY]
= (Cov[X?,Y?] + E[X?][Y?]) — (Cov[X,Y] + E[X]E[Y])?
= E[X?|E[Y?] — E*[X|E*[Y
= Var|X]| VarlY] + Var[X|E*[Y] + Var[Y]E*[X]
=1
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Recap: Variance and Covariance

For independent zero-mean, unit-variance random variables X and Y
VarlXY]| =1

If we have 2n independent zero-mean, unit variance variables

X17Y17X27Y27 <. 7Xn7Yn

Vafr[zn: X;Y;| = z”: Var| X;Y;] =n
i=1 i=1

n

—~ XY, < XY, 1
Var| g — ] = g Var|——] = E — Varl X;Y;] =1
o VAD i=1 vn i=1 "
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Transformer Encoder

S

n n

Var[; )f;%/z] = ; Va'r[)f;?] = ; % Varl X, Y;] =1

3 T
E = Vsoftmax (K Q)
Vv da

The application of /d, is theoretically motivated.

1

See also Xavier initialization: initialize a dot product parameter vector

with values drawn from [J —\/gy \/g
( d V d
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Positional Encoding

di1 Xk
E — (6mb(w1)7‘°°76mb(wk)) S R t f Add & Norm )
do X d '
K=W.E WkERQX 1 Fgﬁsgrd
Q=W,E W, cRexh —
N Add & Norm
V=W,E W, c Rds*d1 NUTt-Hoad
Attention
. K' .
E = Vsoftmax ( \/d_Q ) L\ — )
2 Positional
This is just complicated bag of words... =nooding =
Columns of E for “a cat” Emberdmg

= permutation of columns of E for “cat a” Inputs



Positional Encoding

. D D
Pp,2¢ = S 27 | »Pp,2i+1 = COS T
P2 <100007) P2t (1000%)

* The choice of n = 10,000 is somewhat arbitrary, but it's overall
theoretically motivated: The positional add-6 relation can be represented
by a linear transformation.

Vo,3Ms, s.t. Ppt+s = Mspy (Vp)

* Proof idea: use the addition theorems on trigonometric functions
sin(a 4+ ) = sinacos § + cos asin 8

cos(a + ) = cosacos B — sinasin
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Applying Positional Encoding

E = (emb(w),..., emb(wy)) + P € RI1*F
K=W,E W, ¢cR%x:

Q=W,E W,cR?*"
V=W,E W,cRBXh

3 T
E = Vsoftmax (K Q)
Vda

* Limitation: only fixed number of positions available

* Another option: learnable positional encoding
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Multi-Head Attention

E = (emb(wy),. .., emb(wy)) + P € R&1**
K=W,E W, cR¥®x%
Q=W,E W, cR"?*%
V=W,E W, ¢cR®*%

B T
E = Vsoftmax (K Q>
Vv da

* We can parallelize multiple Wy, W, W,, with
different random initialization (and hope they
learn different ways to attend tokens.
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Stacking Transformer Layers

r N
Add &_Norm
] . Feed
E — (emb(UJ1),---7 me(Wk)) _|_P ~ R e FOF\‘/\\/ard
o do X d )
/K = Wi E W, e R™"™ N> Add & Norm
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Residual Connection and Normalization

 Earlier layers’ output are added to the “vector stream.”

 Normalization: preserve variance.

Add & Norm

Feed
Forward

E’' = Normalized(E®) + P + E) W
/K = W,E W, e R®2*%

Add & Norm

Attention

At

Q=W:E W, ecR=*% LS
\V =W,E W, ¢ ]RdSXdl Encoding

. K'
E = Vsoftmax ( Q)
Vv da

Ca

Input
Embedding

T

Inputs
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Next

Language Modeling
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