CS 489/698: Introduction to Natural Language Processing

Lecture 5: Neural Networks — Common Architectures

Instructor: Freda Shi

fhs@uwaterloo.ca

January 19t 2026

2 WATERLOO

mailto:fhs@uwaterloo.ca

Recap: Multi-Layer Perceptron

~(2) (00000

21 = g (W<0>X n b<o>)

22 — g (W<1>Z<1> n b<1>) (1)

Recap: Simple Neural Classifier with BoW Feature

LN

LK)
O

PAN

This Lecture: Common Neural Architectures

 Convolutional neural networks

* Recurrent neural networks

oo
LN

:\W’W’ Better features?

WAtV
0 090
L

* Recursive neural networks

* Transformers

Convolutional Neural Networks

Introduced for vision tasks; also used in NLP to extract feature vectors.

feature maps feature maps Iayg ; Fe
16 @ 10x 10 16@5x5 I

c. 5, e 120 Py Output

feature maps feature maps 10
Input 6 @ 28 x28 6@ 14x 14
32 x 32
t\
— \
: = T Full Gaussian
Convolutions Full

. . . i connection connection
Subsampling Convolutions Subsampling connection

Convolutional Neural Networks

O(1]0 i1 el s 31l

01]1 41516 [—p

0|1 1(0 71819

1110 Image p.atch- Kgrnel

ol 1] 1 (Local receptive field) (filter) Output
1101 1(0|1]0

Input 1+3+5+6+7+9 = 31

From 2D to 1D: Overview

wait

for

lllll
....
"y

.....
)

the
video

and

do
n't

Faa,
fea,
.,
.y
"y
L
.
......
,
by
.y
"y
.
ay
Y,
L

ann®

rent

P ot
nay
.....
Tau,
.
...........
LT
.....
ey

"

e

ant

.
as®
.
an®
s
aum
T

s
ans
ans
s
e
s
ans

s

1t

nxk representatipn of
sentence with static and
non-static channels

.............

Convolutional Ifayer witz
multiple filter widths an

feature maps

|
I
l | i Fully connected layer
Max-oubr-ime with dropout and
Pooling softmax output

ification
tence Classifica
4). Convolutional Neural Networks for Sen
' im.(2014).
Source: Y. Kim.(

7

Kernel/Filter

 Start from word embeddings Ep‘a/rametem/kemel

e Take dot product between filter and (stretched) word embeddings

Kernel/Filter

 Start from word embeddings Ep‘a/rametem/kemel

e Take dot product between filter and (stretched) word embeddings

Kernel/Filter

 Start from word embeddings Ep‘a/rametem/kemel

e Take dot product between filter and (stretched) word embeddings

10

Kernel/Filter

* What about a kernel/filter with a different size?

[OO0000000000 |

11

Pooling

» Each kernel/filter extracts one type of features

« However, a kernel’s output size depends on sentence length
A fixed dimensional vector is desirable for MLP inputs

» Solution: mean pooling/max pooling converts a vector to a scalar

* Final feature: concatenating pooling results of all filters

w| OO
(0000

pooling

12

Summary: Convolutional Neural Networks for NLP

 Word order matters
Example (kernel size = 2):
a cat drinks milk — (a cat), (cat drinks), (drinks milk)
a milk drinks cat — (a milk), (milk drinks), (drinks cat)

 An n-gram “matches” with a kernel when they have high dot product.

Drawbacks?
* Cannot capture long-term dependency.

« Often used for character-level processing: filters look at character n-grams.

13

Recurrent Neural Networks (RNNs)

 |dea: apply the same transformation to tokens in time order

Wixshiei]+b 0 hyyy = Wixeyq; hyl

Q OR'S
SO

+b

14

Recurrent Neural Networks

» Gradient update forh; = W{x;;h;_1] +b

« Suppose hy is the representation passed to the classifier

We can easily calculate Oloss
Ohy,
810587
« What about OW Oloss Z Oloss Oh,

Oloss Gloss ohy .
3ht N 8ht+1 8ht

15

An important issue of simple RNNs

h, = W{x;;h, 1]+ Db
= Wix;; (W[x¢—1;hy o] +b)] +b

* Absolute value of entries grow/vanish exponentially w.r.t. sequence length.

This motivates the development of more advanced RNN architectures.

16

The Long Short-Term Memory Networks (LSTMs)

Designed to tackle the gradient vanishing problem
[Hochreiter and Schmidhuber, 1997]

» Forgetgate: f; =0 (Wylx;;hy—1] + by)

* Inputgate: iy = o (Wy[x¢; he_1] + by)

e Cell: c; = tanh (W [x¢;hy 1] + b,)
 Update: c; = I *xCci1 4 1; * Cy
 Output gate: 0y = 0 (W, |x4;hy_1] + by)

« Hidden state: h; = o; x tanh(c;)

|dea: keep entries in €; and h; in the range of (—1,1).

® ®
t \

—>

p
—® @ >
@B
® &
(o] [@rh] [o]
- >

[Figure credit: Chris Olah]

17

Gated Recurrent Units

Fewer parameters and generally works quite well.

« Update gate: 2y = 0O (Wz[Xt; ht—l] =+ bz)
e Resetgate: TI't =0 (Wr[Xt; ht—l] =+ bfr)

ht = (1 — Zt) X ht—l + Zt % tanh (W[Xt, Iy x ht—l] -+ b)

18

RNN: Practical Approaches

» Gradient clip: gradient sometimes goes very large even with LSTMs,
Empirical solution: After calculating gradients, require the L, norm to be at most

C (set by hyperparameters).

» At time step t, what matters to h; is mostly x, where t'is close to t.
[Khandelwal et al., ACL 2018]

 Bidirectional modeling typically results in more powerful features.

19

Recursive Neural Networks

* Run constituency parser on sentence, and construct vector recursively

* All nodes share the same set of parameters [Socher et al,, 2011&2013]

emb(fell) emb(apart)

20

Recursive Neural Networks

* Tree LSTMs typically work well.
(slight modification of LSTM cells needed)

f, = 0 (W[x;;hy_1] + b)) L, = 0 (Welhg; hy | +by)

i, = o (W;[xs;hy_1] + b;) r, =0 (Wrlhgh| +by)

¢; = tanh (W [x;;hy_1] + b,) — ¢, = tanh (W.|hy; h,] +b,.)
c; =1 xci_q +1; xCy c,=1,xcp+r,*xc,.+c,
o, = o (W,[xs;hy 1] + by) o, = o (W,lhy; h,] + b,)

h; = o; x tanh(cy) h,, = o,, * tanh(c,)

21

Recursive Neural Networks

* Tree LSTMs typically work well.
(slight modification of LSTM cells needed)

* Recursive neural networks with left-branching trees are basically equivalent to
recurrent neural networks.

» Syntactically meaningful parse trees are not necessary for good
representations: balanced trees work well (or even better) for most tasks.

[Shi et al., EMNLP 2018]

22

Attention

e Can be thought of as weighted sum; each token receives a weight

* From (unweighted) bag of words to (weighted) bag of words
« Each word receives a fixed weight

* Normalize the weights with softmax

weight,,

k .
Oy, = softmax;,_ (wezghtwi) = — ——
E . e Wil

/=1

k
X = Z Oy, - emb(w;)
i=1

23

Parameterized Attention

 Word tokens with the same word type should probably receive different
weights in different sentences

* Implement attention with an MLP (example below)

_ 1
% = EZ

a(w; | X) = softmax’_, (MLP([emb(w;);X])) € R

k

X = Z&(wi | X) - emb(w;)

1=1

24

Self-Attentive RNNs

* The last hidden state of RNN could be bad feature. Why?

« At time step t, what matters to h, is mostly x,» where t'is close to t
[Khandelwal et al., ACL 2018]

a; = softmax_, (MLP(h;)) € R

N

X = Z a;h; Trainable parameters,
; Jointly trained w/ RNN parameters

Caveat: attention weights over RNN hidden states could be bad indicators

on which token is more important
25

Transformers

Attention Is All You Need

Ashish Vaswani®
Google Brain
avaswani@google.com

Llion Jones®
Google Research
llion@google.com

Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Research Google Research
noam@google.com nikip@google.com usz@google.com

Aidan N. Gomez* Fukasz Kaiser®
University of Toronto Google Brain
aidan@cs.toronto.edu lukaszkaiser@google.com
Illia Polosukhin™® *

illia.polosukhin@gmail .com

26

Transformer Encoder

* Transformer: attention-based sentence encoding, Proabities
and optionally, decoding.
 |dea: every token has “attention” to every other token. Gz Nom)
Feed
Forward
r’_.l Add&lNorm |\ m
* For sentence with tokens (w17 ‘e ﬂUk) L 7 J|™
E L (@mb(w) @mb(w)) E Rdlxk ,—»lAddgNorm] Adr\jaé;:?;m
= 1)5- s k e]|
L "NT "N]‘ ngdl . L_}_;J
K T kE k R Tralnable Positional q Positional
Encoding ¥ Encoding
Q p— ‘; ‘/ qE ‘;‘/ q d2 >< 1 paramete rS Emg]g;ctiing Err?bu;ggitmg
T f

V=W,E W, d xd SR et

27

Transformer Encoder

E = (emb(w1), ..., emb(wy)) € RI¥F
K=W,E W, ecR"" KeR"""
Q=W,E W,cR**" QeR"*"
V=W,E W,eR®*" VR

KT
softmax (Q> c RI3xFk

Vs

k X k matrix, softmax over
the first dimension

28

Transformer Encoder

. K'
E = Vsoftmax (Q>

Vda
QT VT
O0O|
felele)
lelele)

OO0 O]

Transformer Encoder

. K'
E = Vsoftmax (Q>

Vda
QT VT
OO0
felele)
lelele)

[obo}

OO0 O]

Transformer Encoder

. K'
E = Vsoftmax (Q>

Vda
QT VT
OO0
felele)
lelele)

OO0 O]

Transformer Encoder

. K'
E = Vsoftmax (Q>

Vda
QT VT
OO0
feiele)
lelele)

OO0 O]

Transformer Encoder

. K'
E = Vsoftmax (Q>

Vda
QT VT
OO0
felele)
lelele)

[obo}

OO0 O]

Transformer Encoder

E = Vsoftmax

~

OO0

felele)

lelele)

OO0 O]

VT

(

K'Q
Vs

)

(0000
0000
0000

0000,

Transformer Encoder

v

~

softmax (

KT
E = Vsoftmax (Q

K'Q

/)

Vs

fe¥e

(000
000

O
O
O
O

i~
O
O
Q)

)
- HEH

Transformer Encoder: Variance Preservation

3 T
E = Vsoftmax (K Q)
V ds

» What s ,/d, for?

* Consider (a, b): if each entry in both vector is drawn from a distribution
with zero mean and unit variance, what would happen if the
dimensionality grows?

* The variance of dot product grows.
softmax([1, —1))
softmax([10, —10])

8808, .1192]
1,2.0612 x 1077

Recap: Variance and Covariance

For independent zero-mean, unit-variance random variables X and Y
VarlXY| = E[X?Y?] — E*[XY]
= (Cov[X?,Y?] + E[X?][Y?]) — (Cov[X,Y] + E[X]E[Y])?
= E[X?|E[Y?] — E*[X|E*[Y
= Var|X]| VarlY] + Var[X|E*[Y] + Var[Y]E*[X]
=1

37

Recap: Variance and Covariance

For independent zero-mean, unit-variance random variables X and Y
VarlXY]| =1

If we have 2n independent zero-mean, unit variance variables

X17Y17X27Y27 <. 7Xn7Yn

Vafr[zn: X;Y;| = z”: Var| X;Y;] =n
i=1 i=1

n

—~ XY, < XY, 1
Var| g —] = g Var|——] = E — Varl X;Y;] =1
o VAD i=1 vn i=1 "

38

Transformer Encoder

S

n n

Var[;)f;%/z] = ; Va'r[)f;?] = ; % Varl X, Y;] =1

3 T
E = Vsoftmax (K Q)
Vv da

The application of /d, is theoretically motivated.

1

See also Xavier initialization: initialize a dot product parameter vector

with values drawn from [J —\/gy \/g
(d V d

39

Positional Encoding

di1 Xk
E — (6mb(w1)7‘°°76mb(wk)) S R t f Add & Norm)
do X d '
K=W.E WkERQX 1 Fgﬁsgrd
Q=W,E W, cRexh —
N Add & Norm
V=W,E W, c Rds*d1 NUTt-Hoad
Attention
. K' .
E = Vsoftmax (\/d_Q) L\ —)
2 Positional
This is just complicated bag of words... =nooding =
Columns of E for “a cat” Emberdmg

= permutation of columns of E for “cat a” Inputs

Positional Encoding

. D D
Pp,2¢ = S 27 | »Pp,2i+1 = COS T
P2 <100007) P2t (1000%)

* The choice of n = 10,000 is somewhat arbitrary, but it's overall
theoretically motivated: The positional add-6 relation can be represented
by a linear transformation.

Vo,3Ms, s.t. Ppt+s = Mspy (Vp)

* Proof idea: use the addition theorems on trigonometric functions
sin(a 4+) = sinacos § + cos asin 8

cos(a +) = cosacos B — sinasin

41

Applying Positional Encoding

E = (emb(w),..., emb(wy)) + P € RI1*F
K=W,E W, ¢cR%x:

Q=W,E W,cR?*"
V=W,E W,cRBXh

3 T
E = Vsoftmax (K Q)
Vda

* Limitation: only fixed number of positions available

* Another option: learnable positional encoding

Add & Norm

Feed
Forward

A

N x

\

Add & Norm

Multi-Head
Attention

At

\.

v,

Positional
Encoding

Ca

Input
Embedding

T

Inputs

Multi-Head Attention

E = (emb(wy),. .., emb(wy)) + P € R&1**
K=W,E W, cR¥®x%
Q=W,E W, cR"?*%
V=W,E W, ¢cR®*%

B T
E = Vsoftmax (K Q>
Vv da

* We can parallelize multiple Wy, W, W,, with
different random initialization (and hope they
learn different ways to attend tokens.

Add & Norm

Feed
Forward

Nx

\,

Add & Norm

Multi-Head
Attention

At

\.

J

Positional
Encoding

Ca

Input
Embedding

T

Inputs

Stacking Transformer Layers

r N
Add &_Norm
] . Feed
E — (emb(UJ1),---7 me(Wk)) _|_P ~ R e FOF\‘/\\/ard
o do X d)
/K = Wi E W, e R™"™ N> Add & Norm
Q=W,E W, e REx% tonion
At
\V -~ W,E W, c R¥bsxh N\ /
) K—|— Positiolnal o
E = Vsoftmax Q =neodng ®_?
\/dig Input
Embedding

T

Inputs

Residual Connection and Normalization

 Earlier layers’ output are added to the “vector stream.”

 Normalization: preserve variance.

Add & Norm

Feed
Forward

E’' = Normalized(E®) + P + E) W
/K = W,E W, e R®2*%

Add & Norm

Attention

At

Q=W:E W, ecR=*% LS
\V =W,E W, ¢]RdSXdl Encoding

. K'
E = Vsoftmax (Q)
Vv da

Ca

Input
Embedding

T

Inputs

45

Next

Language Modeling

46

	Default Section
	Slide 1: CS 489/698: Introduction to Natural Language Processing Lecture 5: Neural Networks – Common Architectures
	Slide 2: Recap: Multi-Layer Perceptron
	Slide 3: Recap: Simple Neural Classifier with BoW Feature
	Slide 4: This Lecture: Common Neural Architectures

	cnn
	Slide 5: Convolutional Neural Networks
	Slide 6: Convolutional Neural Networks
	Slide 7: From 2D to 1D: Overview
	Slide 8: Kernel/Filter
	Slide 9: Kernel/Filter
	Slide 10: Kernel/Filter
	Slide 11: Kernel/Filter
	Slide 12: Pooling
	Slide 13: Summary: Convolutional Neural Networks for NLP

	rnn
	Slide 14: Recurrent Neural Networks (RNNs)
	Slide 15: Recurrent Neural Networks
	Slide 16: An important issue of simple RNNs
	Slide 17: The Long Short-Term Memory Networks (LSTMs)
	Slide 18: Gated Recurrent Units
	Slide 19: RNN: Practical Approaches

	rvnn
	Slide 20: Recursive Neural Networks
	Slide 21: Recursive Neural Networks
	Slide 22: Recursive Neural Networks

	attn & transformers
	Slide 23: Attention
	Slide 24: Parameterized Attention
	Slide 25: Self-Attentive RNNs
	Slide 26: Transformers
	Slide 27: Transformer Encoder
	Slide 28: Transformer Encoder
	Slide 29: Transformer Encoder
	Slide 30: Transformer Encoder
	Slide 31: Transformer Encoder
	Slide 32: Transformer Encoder
	Slide 33: Transformer Encoder
	Slide 34: Transformer Encoder
	Slide 35: Transformer Encoder
	Slide 36: Transformer Encoder: Variance Preservation
	Slide 37: Recap: Variance and Covariance
	Slide 38: Recap: Variance and Covariance
	Slide 39: Transformer Encoder
	Slide 40: Positional Encoding
	Slide 41: Positional Encoding
	Slide 42: Applying Positional Encoding
	Slide 43: Multi-Head Attention
	Slide 44: Stacking Transformer Layers
	Slide 45: Residual Connection and Normalization
	Slide 46: Next

