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Recap: Multi-Layer Perceptron
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Recap: Simple Neural Classifier with BoW Feature
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This Lecture: Common Neural Architectures

• Convolutional neural networks

• Recurrent neural networks

• Recursive neural networks

• Transformers
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…

Better features?



Convolutional Neural Networks

Introduced for vision tasks; also used in NLP to extract feature vectors.
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Convolutional Neural Networks
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1 + 3 + 5 + 6 + 7 + 9 =  31



From 2D to 1D: Overview
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Kernel/Filter
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• Start from word embeddings

• Take dot product between filter and (stretched) word embeddings

parameters/kernel



Kernel/Filter
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Kernel/Filter
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• Start from word embeddings

• Take dot product between filter and (stretched) word embeddings

parameters/kernel



Kernel/Filter
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• What about a kernel/filter with a different size?



Pooling
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• Each kernel/filter extracts one type of features

• However, a kernel’s output size depends on sentence length
A fixed dimensional vector is desirable for MLP inputs

• Solution: mean pooling/max pooling converts a vector to a scalar

• Final feature: concatenating pooling results of all filters

pooling



Summary: Convolutional Neural Networks for NLP

13

• Word order matters
Example (kernel size = 2):
a cat drinks milk → (a cat), (cat drinks), (drinks milk)
a milk drinks cat → (a milk), (milk drinks), (drinks cat)

• An n-gram “matches” with a kernel when they have high dot product.

Drawbacks?

• Cannot capture long-term dependency.

• Often used for character-level processing: filters look at character n-grams.



Recurrent Neural Networks (RNNs)
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• Idea: apply the same transformation to tokens in time order



Recurrent Neural Networks
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• Gradient update for

• Suppose       is the representation passed to the classifier

We can easily calculate  

• What about            ?

 



An important issue of simple RNNs

• Absolute value of entries grow/vanish exponentially w.r.t. sequence length.

This motivates the development of more advanced RNN architectures.
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The Long Short-Term Memory Networks (LSTMs)
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Designed to tackle the gradient vanishing problem 
[Hochreiter and Schmidhuber, 1997] 

• Forget gate: 

• Input gate: 

• Cell: 

• Update: 

• Output gate: 

• Hidden state: 

Idea: keep entries in ෤𝐜𝑡 and 𝐡𝑡 in the range of −1, 1 .
[Figure credit: Chris Olah]



Gated Recurrent Units

Fewer parameters and generally works quite well.

• Update gate: 

• Reset gate:
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RNN: Practical Approaches

• Gradient clip: gradient sometimes goes very large even with LSTMs. 
Empirical solution: After calculating gradients, require the 𝐿2 norm to be at most 
𝐶 (set by hyperparameters).

• At time step 𝑡, what matters to 𝐡𝑡 is mostly 𝐱𝑡′ where 𝑡′is close to 𝑡.
[Khandelwal et al., ACL 2018]

• Bidirectional modeling typically results in more powerful features.
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Recursive Neural Networks
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• Run constituency parser on sentence, and construct vector recursively

• All nodes share the same set of parameters [Socher et al., 2011&2013]



Recursive Neural Networks
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• Tree LSTMs typically work well.
(slight modification of LSTM cells needed)



Recursive Neural Networks

• Tree LSTMs typically work well.
(slight modification of LSTM cells needed)

• Recursive neural networks with left-branching trees are basically equivalent to 
recurrent neural networks.

• Syntactically meaningful parse trees are not necessary for good 
representations: balanced trees work well (or even better) for most tasks.
[Shi et al., EMNLP 2018]
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Attention
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• Can be thought of as weighted sum; each token receives a weight

• From (unweighted) bag of words to (weighted) bag of words
• Each word receives a fixed weight
• Normalize the weights with softmax



Parameterized Attention
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• Word tokens with the same word type should probably receive different 
weights in different sentences

• Implement attention with an MLP (example below)



Self-Attentive RNNs
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• The last hidden state of RNN could be bad feature. Why?

• At time step 𝑡, what matters to 𝐡𝑡 is mostly 𝐱𝑡′ where 𝑡′is close to 𝑡
[Khandelwal et al., ACL 2018]

Caveat: attention weights over RNN hidden states could be bad indicators 
on which token is more important

Trainable parameters,
Jointly trained w/ RNN parameters



Transformers
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Transformer Encoder
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• Transformer: attention-based sentence encoding,
and optionally, decoding.

• Idea: every token has “attention” to every other token.

• For sentence with tokens 

Trainable 
parameters



Transformer Encoder
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𝑘 × 𝑘 matrix, softmax over 
the first dimension



Transformer Encoder



⋅ =

Transformer Encoder



Transformer Encoder



Transformer Encoder



⋅ =

Transformer Encoder



⋯

Transformer Encoder



=

Transformer Encoder



Transformer Encoder: Variance Preservation
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• What is 𝑑2 for?

• Consider ⟨𝐚, 𝐛⟩: if each entry in both vector is drawn from a distribution 
with zero mean and unit variance, what would happen if the 
dimensionality grows?

• The variance of dot product grows.



Recap: Variance and Covariance

37

For independent zero-mean, unit-variance random variables     and



Recap: Variance and Covariance
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For independent zero-mean, unit-variance random variables     and

If we have 2𝑛 independent zero-mean, unit variance variables 



Transformer Encoder
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The application of 𝑑2 is theoretically motivated. 
See also Xavier initialization: initialize a dot product parameter vector 

with values drawn from 



Positional Encoding
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This is just complicated bag of words…

Columns of      for “a cat” 

= permutation of columns of      for “cat a”



Positional Encoding
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• The choice of 𝑛 = 10,000 is somewhat arbitrary, but it’s overall 
theoretically motivated: The positional add-𝛿 relation can be represented 
by a linear transformation.

• Proof idea: use the addition theorems on trigonometric functions



Applying Positional Encoding
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• Limitation: only fixed number of positions available

• Another option: learnable positional encoding



Multi-Head Attention
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• We can parallelize multiple 𝐖𝑘 , 𝐖𝑞 , 𝐖𝑣 with 
different random initialization (and hope they 
learn different ways to attend tokens.



Stacking Transformer Layers
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Residual Connection and Normalization
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• Earlier layers’ output are added to the “vector stream.” 

• Normalization: preserve variance.



Next

Language Modeling

46
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