
CS 489/698: Introduction to Natural Language Processing

Lecture 3: Edit Distance and Word Rerepresentations

Instructor: Freda Shi
fhs@uwaterloo.ca

January 12th, 2026

mailto:fhs@uwaterloo.ca


Recap: Digital Representations

2

How does a human and a computer see?



Recap: Tokenization in Modern NLP Systems

Natural first step: convert tokens into numerical indices for further processing. 

Can we do better than assigning each word a unique index?

3

tokenizer NLP 
model detokenizer… …

Raw text input

Raw text output



Recap: Byte-Level BPE Tokenization

Consider UTF-8 encoding of “Hello world!” 

We will work with the sequence of

48 65 6C 6C 6F 20 57 6F 72 6C 64 21

Base vocabulary: 28 = 256  entries from 00 to FF.

At each step, evaluate frequency of consecutive
vocabulary entry pairs, and add a new entry.

Not much different from character-based BPE!
4

Character UTF-8 Hex

H 48

e 65

l 6C

l 6C

o 6F

(space) 20

W 57

o 6F

r 72

l 6C

d 64

! 21



Recap: Byte-Level BPE Tokenization

What about non-English characters?

Consider UTF-8 encoding of “Hello 世界”.

We will work with the sequence of

48 65 6C 6C 6F 20 E4 B8 96 E7 95 8C

Base vocabulary: 28 = 256  entries from 00 to FF.

It is possible to have an entry of something like 96 E7, which corresponds to 
“combination of sub-characters”.

5

Character UTF-8 Hex

H 48

e 65

l 6C

l 6C

o 6F

(space) 20

世 E4 B8 96

界 E7 95 8C

(world)



Outline of Today’s Lecture

Edit Distance
• Comparing similarity of two sequences

Vector representations of tokens/words (i.e., distributional semantics)
• Comparing similarity of two sequences

6



Similarity between Strings

How to measure the similarity between two strings (e.g., for typo correction)?

Computers are good at exact matches, but bad at “almost” matches.

We need to design algorithms to assign a numerical score to measure similarity.

7

[Image generated with Nano Banana Pro]



Edit Distance: A Proposal

The minimum number of single-character edits required to change one string 𝐴 
into another 𝐵.

Three allowed operations:

• Insertion (add a character)

• Deletion (remove a character)

• Substitution (replace a character with another)

Also known as the Levenshtein Distance. 

8



Examples of Edits

• teh → the
• Delete e at position 2, add e at position 3; or 
• Add h at position 2, delete h at position 4; or 
• Substitute e at position 2 with h, substitute h at position 3 with e. 

• cat → bat
• Substitute c at position 1 with b

• cat → cats
• Add s at position 4

9



Unified Algorithmic Solution

• How about sitting → extension?

Dynamic programming:

Let 𝑓 𝑖 [𝑗] represent the edit distance (minimal number of edits) between the first 
𝑖 characters of 𝐴 and the first 𝑗 characters of 𝐵. 

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

10



Example: sitting → extension

11

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø
1  s
2  i
3  t
4  t
5  i
6  n
7  g



Example: sitting → extension

12

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø 0 1 2 3 4 5 6 7 8 9
1  s 1
2  i 2
3  t 3
4  t 4
5  i 5
6  n 6
7  g 7



Example: sitting → extension

13

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø 0 1 2 3 4 5 6 7 8 9
1  s 1 1
2  i 2
3  t 3
4  t 4
5  i 5
6  n 6
7  g 7



Example: sitting → extension

14

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø 0 1 2 3 4 5 6 7 8 9
1  s 1 1 2 3 4 5
2  i 2
3  t 3
4  t 4
5  i 5
6  n 6
7  g 7



Example: sitting → extension

15

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø 0 1 2 3 4 5 6 7 8 9
1  s 1 1 2 3 4 5 5
2  i 2
3  t 3
4  t 4
5  i 5
6  n 6
7  g 7



Example: sitting → extension

16

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø 0 1 2 3 4 5 6 7 8 9
1  s 1 1 2 3 4 5 5 6 7 8
2  i 2
3  t 3
4  t 4
5  i 5
6  n 6
7  g 7



Example: sitting → extension

17

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø 0 1 2 3 4 5 6 7 8 9
1  s 1 1 2 3 4 5 5 6 7 8
2  i 2 2
3  t 3
4  t 4
5  i 5
6  n 6
7  g 7



Example: sitting → extension

18

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø 0 1 2 3 4 5 6 7 8 9
1  s 1 1 2 3 4 5 5 6 7 8
2  i 2 2 2 3 4 5
3  t 3
4  t 4
5  i 5
6  n 6
7  g 7



Example: sitting → extension

19

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø 0 1 2 3 4 5 6 7 8 9
1  s 1 1 2 3 4 5 5 6 7 8
2  i 2 2 2 3 4 5 6
3  t 3
4  t 4
5  i 5
6  n 6
7  g 7



Example: sitting → extension

20

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

Two counterintuitive 
solutions!

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø 0 1 2 3 4 5 6 7 8 9
1  s 1 1 2 3 4 5 5 6 7 8
2  i 2 2 2 3 4 5 6
3  t 3
4  t 4
5  i 5
6  n 6
7  g 7



Example: sitting → extension

21

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø 0 1 2 3 4 5 6 7 8 9
1  s 1 1 2 3 4 5 5 6 7 8
2  i 2 2 2 3 4 5 6 5
3  t 3
4  t 4
5  i 5
6  n 6
7  g 7



Example: sitting → extension

22

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø 0 1 2 3 4 5 6 7 8 9
1  s 1 1 2 3 4 5 5 6 7 8
2  i 2 2 2 3 4 5 6 5
3  t 3
4  t 4
5  i 5
6  n 6
7  g 7



Example: sitting → extension

23

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø 0 1 2 3 4 5 6 7 8 9
1  s 1 1 2 3 4 5 5 6 7 8
2  i 2 2 2 3 4 5 6 5 6 7
3  t 3 3 3 2 3 4 5 6 6 7
4  t 4 4 4 3 3 4 5 6 7 7
5  i 5 5 5 4 4 4 5 5 6 7
6  n 6 6 6 5 5 4 5 6 7 6
7  g 7 7 7 6 6 5 5 6 7 7



Example: sitting → extension

24

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø 0 1 2 3 4 5 6 7 8 9
1  s 1 1 2 3 4 5 5 6 7 8
2  i 2 2 2 3 4 5 6 5 6 7
3  t 3 3 3 2 3 4 5 6 6 7
4  t 4 4 4 3 3 4 5 6 7 7
5  i 5 5 5 4 4 4 5 5 6 7
6  n 6 6 6 5 5 4 5 6 7 6
7  g 7 7 7 6 6 5 5 6 7 7



Example: sitting → extension

25

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

Edge cases: 

• 𝑓 0 𝑖 = 𝑓 𝑖 0 = 𝑖

0 Ø 1  e 2  x 3  t 4  e 5  n 6  s 7  i 8  o 9  n
0 Ø 0 1 2 3 4 5 6 7 8 9
1  s 1 1 2 3 4 5 5 6 7 8
2  i 2 2 2 3 4 5 6 5 6 7
3  t 3 3 3 2 3 4 5 6 6 7
4  t 4 4 4 3 3 4 5 6 7 7
5  i 5 5 5 4 4 4 5 5 6 7
6  n 6 6 6 5 5 4 5 6 7 6
7  g 7 7 7 6 6 5 5 6 7 7



Dynamic Programming Intuition

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 1 (deletion)

𝑓 𝑖 𝑗 − 1 + 1 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 1

The equation implies doing nothing when 𝐴 𝑖 = 𝐵 𝑗  when calculating 𝑓 𝑖 [𝑗]. 

Why is this correct?

Intuition: in such cases, doing nothing may not be the unique best solution, but it 
is one of the best. 

𝑓 4 3 = 3 for sitting → extension, which could come from 𝑓 3 2 , or 𝑓 3 3 + 1.

26



Extension: Different Operations with Different Costs

The minimum cost of single-character edits required to change one word into the 
other. Each operation could have a different non-negative cost. 

Three allowed operations:

• Insertion (add a character) with cost 𝑎.

• Deletion (remove a character) with cost 𝑏.

• Substitution (replace a character with another) with cost 𝑐.

27



Extension: Different Operations with Different Costs

The minimum cost of single-character edits required to change one word into the 
other. Each operation could have a different non-negative cost. 

𝑓 𝑖 𝑗 = min ൞

𝑓 𝑖 − 1 𝑗 + 𝑎 (deletion)

𝑓 𝑖 𝑗 − 1 + 𝑏 (insertion)

𝑓 𝑖 − 1 𝑗 − 1 + 𝑐𝑜𝑠𝑡 substitution, or do nothing

 

𝑐𝑜𝑠𝑡 = 0 if 𝐴 𝑖 = 𝐵[𝑗], otherwise 𝑐

28



Outline of Today’s Lecture

Edit Distance
• Comparing similarity of two sequences

Vector representations of tokens/words (i.e., distributional semantics)
• Comparing similarity of two sequences

29



Word Vectors

Until about 2010, in NLP, words meant atomic symbols.

Nowadays, it’s natural to think about word vectors when talking about words in 
NLP. Each word is represented by a vector.

Key idea: similar words are nearby in a good vector space.

Visualization: https://projector.tensorflow.org/ 

30

https://projector.tensorflow.org/


How Models Represent Words

31

cat

17

chef

91

chicken

253

civic

104

cooked

5

…

…



How Models Represent Words

32

cat chef chicken civic cooked …

…0.1

7.9

2.4

-1.3

0.5

-0.1

2.1

3.8

-0.1

5.3

-0.4

2.4

9.7

-1.0

3.2

0.1

0

-1.5

2.4

0.2

-0.5

-1.1

7.6

-3.1

4.2



Motivation

33

One of the key challenges for NLP is variability of language (multiple forms, same 
meaning).

really

2.1

-7.9

2.4

-1.3

8.4

reallly

2.3

-6.1

2.2

-0.8

8.3

realllly

1.9

-6.8

1.9

-1.0

8.2

cooked

-0.5

-1.1

7.6

-3.1

4.2



Representation Learning for Engineering

Engineering: these representations are often useful for downstream tasks!

Transfer learning: 

34

Text   ⇒            ⇒ Context Prediction

Segmentation, Visual QA, ... 

Classification, QA, …

Image ⇒            ⇒ Object Classification



How to represent a word

35

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

better

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

winner cat𝑤 =

|𝑉|

…

|𝑉|

∊ 𝑉

“One-hot” representation of words

𝑅𝑒𝑝 𝑤 ∈ 0, 1 𝑉

|𝑉| could be very large (e.g., 50K).

Word vectors are orthogonal.

champion



What is an ideal word representation?

• It should probably capture information about usage and meaning:
• Part of speech tags (noun, verb, adj., adv., etc.)
• The intended sense
• Semantic similarities (winner vs. champion)
• Semantic relationships (antonyms, hypernyms, etc.)

36



Features?

37

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

better

1

0

0

1

0

0

1

0

1

1

0

0

0

0

0

1

winner cat champion

|𝑉|

…

Is noun?
Is verb?
Is adj.?
Is animal?

…
?



Features?

This could extend infinitely. 

38

WordNet



What is an ideal word representation?

• It should probably capture information about usage and meaning:
• Part of speech tags (noun, verb, adj., adv., etc.)
• The intended sense
• Semantic similarities (winner vs. champion)
• Semantic relationships (antonyms, hypernyms, etc.)

39

Distributional Semantics:
How much of this can we capture from context/data alone?



Distributional Hypothesis

40

“The meaning of a word is its use in the language.”

  --Ludwig Wittgenstein (1943)

“You shall know a word by the company it keeps.”

-- J.R. Firth, A Synopsis of Linguistic Theory (1957)

The use of a word is defined by its contexts 
(i.e., the words that appear around it).



Distributional Semantics

41

Consider a new word: tezgüino.

1. A bottle of tezgüino is on the table.

2. Everybody likes tezgüino.

3. Don’t have tezgüino before you drive.

4. We make tezgüino out of corn.

What do you think tezgüino is? 

loud
motor oil
tortillas
choices
wine

1 2 3 4
tezgüino 1 1 1 1
loud 0 0 0 0
motor oil 1 0 0 1
tortillas 0 1 0 1
choices 0 1 0 0
wine 1 1 1 0



Distributional Hypothesis

How can we automate the process of constructing representations of word 
meaning from its “company”?

First solution: word-word cooccurrence counts.

42



Counting for Word Vectors

43

cat         chef        chicken      civic        cooked       council

words we are computing vectors for:

the

cat

chicken

city

cook

context
words:



Counting for Word Vectors

… , the club may also employ a chef to prepare and cook food items .

… is up to remy , linguini , and the chef colette to cook for many people …

… cooking program the cook and the chef with simon bryant , who is … 

44

chef

the

cat

chicken

city

cook

context
words:

0

0

0

0

0



Counting for Word Vectors

… , the club may also employ a chef to prepare and cook food items .

… is up to remy , linguini , and the chef colette to cook for many people …

… cooking program the cook and the chef with simon bryant , who is … 

45

chef

the

cat

chicken

city

cook

context
words:

2

0

0

0

0

Window size 𝑤 =1



Counting for Word Vectors

… , the club may also employ a chef to prepare and cook food items .

… is up to remy , linguini , and the chef colette to cook for many people …

… cooking program the cook and the chef with simon bryant , who is … 

46

chef

the

cat

chicken

city

cook

context
words:

3

0

0

0

3

Window size 𝑤 = 4



Counting for Word Vectors

47

cat         chef        chicken      civic        cooked       council

words we are computing vectors for:

the

cat

chicken

city

cook

context
words:

24708

2336

23

116

12

7410

14

21

89

113

7853

23

1640

62

34

16486

0

1

943

6

3463

1

181

7

34

316380

36

7

27033

51



Word Similarity

Once we have word vectors, we can compute word similarities.

Among many ways to define similarity of two vectors, a simple way is the dot 
product: 

𝒖 ⋅ 𝒗 = 𝒖𝑇𝒗 = ෍

𝑖

𝑢𝑖𝑣𝑖

Dot product is large when the vectors have very large (in terms of absolute 
values) in the same dimensions.

Cosine similarity: 

cos 𝒖, 𝒗 =
𝒖 ⋅ 𝒗

𝒖 𝒗
=

σ𝑖 𝑢𝑖𝑣𝑖

σ𝑖 𝑢𝑖
2 σ𝑖 𝑣𝑖

2

48



cat            chef          chicken        civic          cooked       council

With dot product as similarity function, let’s find the 
most similar words (“nearest neighbors”) to each word:

nearest
neighbors

council

cat

civic

chicken

chef

cooked

council

cat

civic

chicken

chef

cooked

council

cat

civic

chicken

chef

cooked

council

cat

civic

chicken

chef

cooked

council

cat

civic

chicken

chef

cooked

council

cat

civic

chicken

chef

cooked



Counting for Word Vectors

50

cat         chef        chicken      civic        cooked       council

words we are computing vectors for:

the

cat

chicken

city

cook

context
words:

24708

2336

23

116

12

7410

14

21

89

113

7853

23

1640

62

34

16486

0

1

943

6

3463

1

181

7

34

316380

36

7

27033

51



cat            chef          chicken        civic          cooked       council

Now use cosine similarity:

nearest
neighbors

cat

chef

cooked

civic

council

chicken

chef

civic

cooked

council

cat

chicken

chicken

cooked

chef

civic

council

cat

civic

council

chef

cooked

cat

chicken

cooked

chef

civic

council

cat

chicken

council

civic

chef

cooked

cat

chicken



Issues with Counting-Based Vectors

Raw frequency count is probably a bad representation!

Counts of common words are very large, but not very useful

• “the”, “it”, “they”

• Not very informative

There are many ways proposed for improving raw counts.

• Removing “stop words”. 

• Down-weight less informative words.

52



TF-IDF

TF (Term Frequency) - IDF (Inverse Document Frequency)

• Information Retrieval (IR) workhorse!

• A common baseline model

• Sparse vectors

• Words are represented by (a simple function of) the counts of nearby words

53



TF-IDF

Consider a matrix of word counts across documents: term-document matrix.

54

word

document



Term Frequency

55

bag-of-words
(document 
representation)

word 
vector



Inverse Document Frequency

IDF from 37 Shakespear plays: 

56



IDF from 37 Shakespear plays: 

57

TF-IDF



Pointwise Mutual Information (PMI)

Consider two random variables, 𝑋 and 𝑌.

Do two events 𝑋 = 𝑥 and 𝑌 = 𝑦 occur together more often than if they were 
independent?

PMI 𝑥, 𝑦 = log2

𝑝𝑋,𝑌 𝑥, 𝑦

𝑝𝑋 𝑥 𝑝𝑌(𝑦)

If they are independent, PMI = 0.

58



PMI for Word Vectors

For words 𝑋 and its context 𝑌, each probability can be estimated using counts we 
already computed.

PMI 𝑥, 𝑦 = log2

𝑝𝑋,𝑌 𝑥, 𝑦

𝑝𝑋 𝑥 𝑝𝑌(𝑦)

𝑝𝑋,𝑌 𝑥, 𝑦 =
#(𝑥, 𝑦)

𝑁 − 1
, 𝑝𝑋 𝑥 =

σ𝑧 #(𝑥, 𝑧)

𝑁
, 𝑝𝑌 𝑦 =

σ𝑧 # 𝑧, 𝑦

𝑁

𝑁: total count of words

#(⋅,⋅): co-occurrence count of two words

59



Top co-occurrence counts with “chicken” 

60

14464 ,

 7853 the

 6276 and

 5931 .

 5213 a

 3963 of

 3282 in

 2520 to

 2438 "

 2339 is

 2127 with

 1818 (

 1745 )

 1640 chicken

 1594 as

1525 or

1225 for

1061 ‘s

 940 fried

 906 on

 889 was

 869 that

 828 are

 777 by

 746 from

 710 it

 600 beef

 590 which

 557 also

 531 an

508 pork

500 meat

481 be

479 he

452 such

445 his

417 at

405 soup

389 made

384 rice

375 but

350 has

330 fish

325 other

318 this



Words with largest PMI with “chicken”

61

10.2  fried

 9.7  chicken

 9.3  pork

 9.0  beef

 8.7  soup

 7.8  sauce

 7.7  curry

 7.6  cooked

 7.5  lamb

 7.4  dish

 7.3  shrimp

 7.3  egg

 7.2  sandwich

 7.2  dishes

 7.2  meat

7.0 robot

6.9 burger

6.8 recipe

6.6 vegetables

6.6 potatoes

6.6 goat

6.5 eggs

6.4 cow

6.4 pizza

6.4 rice

6.3 ribs

6.3 tomatoes

6.2 cheese

6.2 duck

6.1 chili

6.1 pig

6.0 breeds

6.0 vegetable

6.0 potato

5.9 goose

5.9 dixie

5.9 kung

5.9 pie

5.8 menu

5.8 steamed

5.8 tastes

5.7 beans

5.7 butter

5.7 barn

5.7 breed



Positive PMI (PPMI)

Some have found benefit by truncating PMI at 0 (“positive PMI”).
PPMI 𝑥, 𝑦 = max 0, PMI 𝑥, 𝑦

Negative PMI: words occur together less than we would expect, i.e., they are 
anticorrelated.

These anticorrelation may need more data to reliably estimate. 

However, negative PMIs do seem reasonable.

62



10.2  fried

 9.7  chicken

 9.3  pork

 9.0  beef

 8.7  soup

 7.8  sauce

 7.7  curry

 7.6  cooked

 7.5  lamb

 7.4  dish

 7.3  shrimp

 7.3  egg

 7.2  sandwich

0.003  climbed

 0.003  detailing

 0.002  turkish

 0.002  oaks

 0.001  productivity

 0.000  swing

-0.001  structures

-0.001  thirteenth

-0.001  commentators

-0.001  palmer

-0.002  obstacles

-0.003  horns

-0.003  burning

-4.6  users

-4.6  data

-4.7  discussion

-4.7  museum

-4.7  below

-4.8  editors

-4.8  railway

-4.8  committee

-4.8  elected

-4.9  championship

-5.0  archive

-5.3  edits

-6.1  deletion

Smallest PMIs:PMIs close to zero:Largest PMIs:



Word2Vec

Learning representations with neural networks

64

[Mikolov et al., 2013]



Word2Vec

Instead of counting, train a classifier (neural network) to predict context (e.g. 
neighboring words).

• Training is self-supervised: no annotated data required, just raw text.

• Word embeddings learned via backpropagation.

65



Word2Vec: Training Objectives

• CBOW (Continuous Bag-of-Words): learning representations that predict a 
word given “a bag of context” (many-to-one prediction).

𝑃 𝑤𝑡 𝑤𝑡+1, … , 𝑤𝑡+𝑘 , 𝑤𝑡−1, … , 𝑤𝑡−𝑘

• Skipgram: learning representations that predict the context given a word

𝑃 𝑤𝑡+1, … , 𝑤𝑡+𝑘 , 𝑤𝑡−1, … , 𝑤𝑡−𝑘 𝑤𝑡 = 𝑃 𝑤𝑡+1 𝑤𝑡 …  𝑃 𝑤𝑡−𝑘 𝑤𝑡

66



Skipgram

Randomly initialized (to be learned with backpropagation).

67

Just a (log) linear model!

softmax



Skipgram

68

it is a far , far better rest that I go to , than I have ever known



Skipgram

69

it is a far , far better rest that I go to , than I have ever known



Skipgram

70

it is a far , far better rest that I go to , than I have ever known



CBOW

71

it is a far , far better rest that I go to , than I have ever known

Use the context to predict 
the center word



CBOW

72

Use the context to predict 
the center word

it is a far , far better rest that I go to , than I have ever known



Skipgram with negative sampling

73

• Vocabulary size V: 50K – 30M

• Very expensive O(|V|)



Skipgram with negative sampling

Treat the target word and a neighboring context word as positive examples.

Randomly sample other words outside of context to get negative samples.

Learn to distinguish between positive and negative samples with a binary 
classifier.

74

C = Negative Samples



(logistic) sigmoid:



Extensions

76

“You shall know a word by the company it keeps”
anything?

Node2Vec
[Grover and Leskovec 2016]

Concept2Vec
[Choi et al. 2016]

World2Vec
[Facebook AI Research]



Next

Building a simple text classifier

77

Ludwig the Cat


	Default Section
	Slide 1: CS 489/698: Introduction to Natural Language Processing  Lecture 3: Edit Distance and Word Rerepresentations

	recap
	Slide 2: Recap: Digital Representations
	Slide 3: Recap: Tokenization in Modern NLP Systems
	Slide 4: Recap: Byte-Level BPE Tokenization
	Slide 5: Recap: Byte-Level BPE Tokenization

	edit distance
	Slide 6: Outline of Today’s Lecture
	Slide 7: Similarity between Strings
	Slide 8: Edit Distance: A Proposal
	Slide 9: Examples of Edits
	Slide 10: Unified Algorithmic Solution
	Slide 11: Example: sitting goes to extension
	Slide 12: Example: sitting goes to extension
	Slide 13: Example: sitting goes to extension
	Slide 14: Example: sitting goes to extension
	Slide 15: Example: sitting goes to extension
	Slide 16: Example: sitting goes to extension
	Slide 17: Example: sitting goes to extension
	Slide 18: Example: sitting goes to extension
	Slide 19: Example: sitting goes to extension
	Slide 20: Example: sitting goes to extension
	Slide 21: Example: sitting goes to extension
	Slide 22: Example: sitting goes to extension
	Slide 23: Example: sitting goes to extension
	Slide 24: Example: sitting goes to extension
	Slide 25: Example: sitting goes to extension
	Slide 26: Dynamic Programming Intuition
	Slide 27: Extension: Different Operations with Different Costs
	Slide 28: Extension: Different Operations with Different Costs

	word embeddings
	Slide 29: Outline of Today’s Lecture
	Slide 30: Word Vectors
	Slide 31: How Models Represent Words
	Slide 32: How Models Represent Words
	Slide 33: Motivation
	Slide 34: Representation Learning for Engineering
	Slide 35: How to represent a word
	Slide 36: What is an ideal word representation?
	Slide 37: Features?
	Slide 38: Features?
	Slide 39: What is an ideal word representation?
	Slide 40: Distributional Hypothesis
	Slide 41: Distributional Semantics
	Slide 42: Distributional Hypothesis
	Slide 43: Counting for Word Vectors
	Slide 44: Counting for Word Vectors
	Slide 45: Counting for Word Vectors
	Slide 46: Counting for Word Vectors
	Slide 47: Counting for Word Vectors
	Slide 48: Word Similarity
	Slide 49
	Slide 50: Counting for Word Vectors
	Slide 51
	Slide 52: Issues with Counting-Based Vectors
	Slide 53: TF-IDF
	Slide 54: TF-IDF
	Slide 55: Term Frequency
	Slide 56: Inverse Document Frequency
	Slide 57: TF-IDF
	Slide 58: Pointwise Mutual Information (PMI)
	Slide 59: PMI for Word Vectors
	Slide 60: Top co-occurrence counts with “chicken” 
	Slide 61: Words with largest PMI with “chicken”
	Slide 62: Positive PMI (PPMI)
	Slide 63
	Slide 64: Word2Vec
	Slide 65: Word2Vec
	Slide 66: Word2Vec: Training Objectives
	Slide 67: Skipgram
	Slide 68: Skipgram
	Slide 69: Skipgram
	Slide 70: Skipgram
	Slide 71: CBOW
	Slide 72: CBOW
	Slide 73: Skipgram with negative sampling
	Slide 74: Skipgram with negative sampling
	Slide 75
	Slide 76: Extensions
	Slide 77: Next


