CS 489/698: Introduction to Natural Language Processing

Lecture 3: Edit Distance and Word Rerepresentations

Instructor: Freda Shi

fhs@uwaterloo.ca

January 12t 2026

24 WATERLOO


mailto:fhs@uwaterloo.ca

Recap: Digital Representations

How does a human and a computer see?
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Recap: Tokenization in Modern NLP Systems

Natural first step: convert tokens into numerical indices for further processing.

Can we do better than assigning each word a unique index?

Raw text input

Raw text output



Recap: Byte-Level BPE Tokenization

Consider UTF-8 encoding of “Hello world!”

We will work with the sequence of
48 65 6C6C6F 2057 6F 726C 064 21

Base vocabulary: 28 = 256 entries from 00 to FF.

At each step, evaluate frequency of consecutive
vocabulary entry pairs, and add a new entry.

Not much different from character-based BPE!

Character

UTF-8 Hex

48
65
6C
6C
6F
20
57
6F
72
6C
64
21




Recap: Byte-Level BPE Tokenization

What about non-English characters?

Consider UTF-8 encoding of “Hello ]

HER.

(world)

We will work with the sequence of
48 65 6C 6C oF 20 E4 B8|96 E/|95

8C

Base vocabulary: 28 = 256 entries from 00 to FF.

It is possible to have an entry of something like 96 E7

“combination of sub-characters”.

Character UTF-8 Hex

H 48

e 65

| 6C

| 6C

0 oF

(space) 20
= E4 B8 96
H E7 95 8C

, which corresponds to



Outline of Today’s Lecture

Edit Distance

« Comparing similarity of two sequences

Vector representations of tokens/words (i.e., distributional semantics)

 Comparing similarity of two sequences



Similarity between Strings

How to measure the similarity between two strings (e.g., for typo correction)?

Teh > The
Teh quick brown fox jumps over the lazy dog.

Computers are good at exact matches, but bad at “almost” matches.

We need to design algorithms to assign a numerical score to measure similarity.



Edit Distance: A Proposal

The minimum number of single-character edits required to change one string A
into another B.

Three allowed operations:
 Insertion (add a character)
* Deletion (remove a character)

» Substitution (replace a character with another)

Also known as the Levenshtein Distance.



Examples of Edits

e teh — the
e Delete e at position 2, add e at position 3; or
« Add h at position 2, delete h at position 4; or
» Substitute e at position 2 with h, substitute h at position 3 with e.

e cat — bat
* Substitute c at position 1 with b

* cat — cats
 Add s at position 4



Unified Algorithmic Solution

 How about sitting — extension?

Dynamic programming:

Let f|i][j] represent the edit distance (minimal number of edits) between the first
i characters of A and the first j characters of B.

(1~ 1[j] +1 (deletion)
flillj] = min< fli][j — 1] + 1 (insertion)
fli —1][j — 1] + cost  (substitution, or do nothing)

cost = 0 if A[i] = B[j], otherwise 1
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Example: sitting = extension

fli—-1]jl1+1 (deletion)
flillj] = min< fli][j — 1] + 1 (insertion)
\f i —1][j — 1] + cost  (substitution, or do nothing)

cost = 0 if A[i] = B[j], otherwise 1

Edge cases: 0O 1e 2x 3t 4e 5n 6s 7i 80 9n

+ fl01[7] = fli1[0] = ¢ L
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Example: sitting = extension

fli—-1]jl1+1 (deletion)
flillj] = min< fli][j — 1] + 1 (insertion)
\f i —1][j — 1] + cost  (substitution, or do nothing)
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Example: sitting = extension

fli—-1]jl1+1 (deletion)
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Example: sitting = extension

fli—-1]jl1+1 (deletion)
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Example: sitting = extension

fli—-1]jl1+1 (deletion)
flillj] = min< fli][j — 1] + 1 (insertion)
\f i —1][j — 1] + cost  (substitution, or do nothing)
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_ _ _ 00 1 2 3 4 5 6 7 8 9
* f10][i] = fLill0] =i 1s 1 2 3 4 5 5 6 7 8
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Example: sitting = extension
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Example: sitting = extension

fli—-1]jl1+1 (deletion)
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Example: sitting = extension

fli—-1]jl1+1 (deletion)
flillj] = min< fli][j — 1] + 1 (insertion)
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Example: sitting = extension

fli—-1]jl1+1 (deletion)
flillj] = min< fli][j — 1] + 1 (insertion)
\f i —1][j — 1] + cost  (substitution, or do nothing)

cost = 0 if A[i] = B[j], otherwise 1

Edge cases: 0O 1e 2x 3t 4e 5n 6s 7i 80 9n
) ) ) 09 1 2 3 4 5 6 7 8 9
* f10][i] = fLill0] =i 1s 1 2 3 4 5 5 6 7 8

Two counterintuitive
solutions!

20

H
~+
N OO o0 A W N - O



Example: sitting = extension

fli—-1]jl1+1 (deletion)
flillj] = min< fli][j — 1] + 1 (insertion)
\f i —1][j — 1] + cost  (substitution, or do nothing)

cost = 0 if A[i] = B[j], otherwise 1

Edge cases: 0O 1e 2x 3t 4e 5n 6s 7i 80 9n
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Example: sitting = extension

fli—-1]jl1+1 (deletion)
flillj] = min< fli][j — 1] + 1 (insertion)
\f i —1][j — 1] + cost  (substitution, or do nothing)

cost = 0 if A[i] = B[j], otherwise 1

Edge cases: 0O 1e 2x 3t 4e 5n 6s 7i 80 9n
) ) ) 00 1 2 3 4 5 &) / 8 9
* f10][i] = fLill0] =i 1s 1 2 3 4 5 5 6 7 8
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Example: sitting = extension

(i~ 1[j] +1 (deletion)
flillj] = min< fli][j — 1] + 1 (insertion)
\f i —1][j — 1] + cost  (substitution, or do nothing)

cost = 0 if A[i] = B[j], otherwise 1

Edge cases: 0O 1e 2x 3t 4e 5n 6s 7i 80 9n
) ) ) 0 O 1 2 3 4 5 6 7 8 9

) f[O][l] =f[l][0] -t 1s 1 1 2 3 4 5 5 6 7 8
21 2 2 2 3 4 5 6 5 6 7/

3t 3 3 3 2 3 4 5 6 6 7

4t 4 4 4 3 3 4 5 6 7 7

5i 5 5 5 4 4 4 5 5 6 7/

6n O 6 6 5 5 4 5 6 7/ 6

/79 7/ 7 7 6 6 5 5 6 7 7
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Example: sitting = extension

(i~ 1[j] +1 (deletion)
flillj] = min< fli][j — 1] + 1 (insertion)
\f i —1][j — 1] + cost  (substitution, or do nothing)

cost = 0 if A[i] = B[j], otherwise 1
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Example: sitting = extension

(i~ 1[j] +1 (deletion)
flillj] = min< fli][j — 1] + 1 (insertion)
\f i —1][j — 1] + cost  (substitution, or do nothing)

cost = 0 if A[i] = B[j], otherwise 1

Edge cases: 0O 1e 2x 3t 4e 5n 6s 7i 80 9n
) ) ) 0g O 1 2 3 4 5 6 7 8 9

) f[O][l] =f[l][0] — ! 1s 1 1 2 3 4 5 5 6 7 8
21 2 2 2 3 4 5 6 5 6 7/

3t 3 3 3 2 3 4 5 6 6 7

4t 4 4 4 3 3 4 5 6 7 7

5i 5 5 5 4 4 4 5 5 6 7/

6n O 6 6 5 5 4 5 6 7/ 6

/79 7/ 7 7 6 6 5 5 6 7 7/
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Dynamic Programming Intuition

(1~ 101 + 1 (deletion)
fLU] = minq L —1]+1 (insertion)
kf i —1][j — 1] + cost  (substitution, or do nothing)

cost = 0 if A[i] = B[j], otherwise 1
The equation implies doing nothing when Ali] = B[j] when calculating f[i][/j].
Why is this correct?

Intuition: in such cases, doing nothing may not be the unique best solution, but it
Is one of the best.

fl141|3] = 3 for sitting — extension, which could come from f[3][2], or f[3]][3] + 1.
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Extension: Different Operations with Different Costs

The minimum cost of single-character edits required to change one word into the
other. Each operation could have a different non-negative cost.

Three allowed operations:
 Insertion (add a character) with cost a.
* Deletion (remove a character) with cost b.

* Substitution (replace a character with another) with cost c.

27



Extension: Different Operations with Different Costs

The minimum cost of single-character edits required to change one word into the
other. Each operation could have a different non-negative cost.

(f i—1]j]+a (deletion)
flillj] = min< flillj — 1] + b (insertion)
\f i —1][j — 1] + cost  (substitution, or do nothing)

cost = 0 if Ali] = B[j], otherwise c

28



Outline of Today’s Lecture

Edit Distance

« Comparing similarity of two sequences

Vector representations of tokens/words (i.e., distributional semantics)

 Comparing similarity of two sequences
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Word Vectors

Until about 2010, in NLP, words meant atomic symbols.

Nowadays, it's natural to think about word vectors when talking about words in
NLP. Each word is represented by a vector.

Key idea: similar words are nearby in a good vector space.

Visualization: https://projector.tensorflow.org/

30


https://projector.tensorflow.org/

How Models Represent Words
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How Models Represent Words

cat
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Motivation

One of the key challenges for NLP is variability of language (multiple forms, same

meaning).

really
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Representation Learning for Engineering

Engineering: these representations are often useful for downstream tasks!

Transfer learning:

— Segmentation, Visual QA, ...

Image = = Object Classification

Text = = Context Prediction

. Classification, QA, ...
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How to represent a word

“One-hot” representation of words

1 0 0 0

0 1 0 0 Rep(w) € {0, 131V

0 0 0 0

V| - ° ° ° ° |V| could be very large (e.g., 50K).

0 0 0 0

0 0 0 0 Word vectors are orthogonal.

0 0 1 0

0 0 0 1

w = Dbetter winner - cat champion

eV |]'/| 35



What is an ideal word representation?

* |t should probably capture information about usage and meaning:

» Part of speech tags (noun, verb, adj., adv., etc.)

The intended sense

Semantic similarities (winner vs. champion)

Semantic relationships (antonyms, hypernyms, etc.)



Features?

Is noun?
Is verb?
Is adj.?

s animal?

0 ] ]
0 0 0
] 0 0
0 0 ]
0 0 0
0 0 0
0 0 ]
0 0 0

.

better winner -+ cat

eolNelNelNeRNe)

champion

V]
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Features?

This could extend infinitely.

WordNet

{wheeled vehicle} =—has-p, brake
T \/)a part->{ } 6\% %
s : ),
K = 4% Payy {slow} _ “\0“\ & @\
& < ,‘o% {wheel} 2 %
| \ lash e’@g § v
: ; splasher ok
{wagon, {self-propelled vehicle} tsF } % {quick, speedy}
waggon} &
_ : {speed, swiftness, fastness}
k3 7 .
R © ?
o
P
. Vi i |
{motor vehicle} {tractor} {locomo.“‘ - engll]e’ {acceleration}
locomotive engine, |
railway locomotive} 3
& ] S
> ® £
. B
/ R {car window} &
{golf cart {car, auto, automobile, __ has-Par 2
golfeart} machine, motorcar} *
7 \,5 {accelerate, speed, speed up}
> g %, %
¥ S , AP
< @'Q /{;’r :}\(\'
& A &
{convertible} y {accelerator, /00
accelerator pedal,

{air bag} gas pedal, throttle}

38



What is an ideal word representation?

* |t should probably capture information about usage and meaning:
» Part of speech tags (noun, verb, adj., adv., etc.)
* The intended sense
* Semantic similarities (winner vs. champion)

* Semantic relationships (antonyms, hypernyms, etc.)

Distributional Semantics:
How much of this can we capture from context/data alone?

39



Distributional Hypothesis

“The meaning of a word is its use in the language.”

--Ludwig Wittgenstein (1943)

"You shall know a word by the company it keeps.”

-- J.R. Firth, A Synopsis of Linguistic Theory (1957)

The use of a word is defined by its contexts
(i.e., the words that appear around it).

40



Distributional Semantics

Consider a new word: tezguino.

1. A bottle of tezguino is on the table.
2. Everybody likes tezguino.
3. Don't have tezguino before you drive.

4. We make tezguino out of corn.

loud
motor oil
tortillas
choices
wine

What do you think tezguino is?

12 3[4

tezguino
loud
motor oil
tortillas
choices

wine

[ERY

_ O O +—»r O -

) P 2, O O K

_, O O O O B+

O O B rr O B

41



Distributional Hypothesis

How can we automate the process of constructing representations of word
meaning from its “company”™?

First solution: word-word cooccurrence counts.
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Counting for Word Vectors

context
words:

the
cat
chicken
city

cook

words we are computing vectors for:

cat

/‘

chef

'\

chicken
- N
- 4

/‘

CIVIC

'\

cooked
e ™\
g 4

council

4 N
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Counting for Word Vectors

..., the club may also employ a chef to prepare and cook food items .
... 1s up to remy, linguini, and the chef colette to cook for many people ...

... cooking program the cook and the chef with simon bryant, who is ...

chef

the (0
context cat 0
words:  chicken 0
city 0
cook 0




Counting for Word Vectors

..., the club may also employ a chef to prepare and cook food items .
... 1s up to remy, linguini, and the chef colette to cook for many people ...

... cooking program the cook and the chef with simon bryant, who is ...
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Counting for Word Vectors

..., the club may also employ a chef to prepare and cook food items.
... 1s up to remy, linguini , and the chef colette to cook for many people ...

... cooking program the cook and the chef with simon bryant, who is ...

chef
the [ 3 )
Window size w = 4 context cat | O
words:  chicken | O
city 0
cook 3




Counting for Word Vectors

context
words:

the
cat
chicken
city

cook

words we are computing vectors for:

cat

/5470é\

2336
23
116
12

chef

K7410
14
21
89
113

'\

chicken

(7853\
23

1640
62
34

CIVIC

(" )
16486

cooked

4 )
3463
1

181

34

(. )

council

316380
36
7
27033
51
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Word Similarity

Once we have word vectors, we can compute word similarities.

Among many ways to define similarity of two vectors, a simple way is the dot

product:
u-v=ulv =Zuivi

i
Dot product is large when the vectors have very large (in terms of absolute
values) in the same dimensions.

Cosine similarity:

cos(u,v) =

48



With dot product as similarity function, let’s find the
most similar words (“nearest neighbors”) to each word:

nearest

neighbors

cat chef chicken civic cooked council
council | council council council | council council
cat cat cat cat cat cat
CIviC civic CIVIC Civic civic civic
chicken | chicken chicken | chicken | chicken chicken
chef chef chef chef chef chef
cooked | cooked cooked cooked | cooked cooked




Counting for Word Vectors

context
words:

the
cat
chicken
city

cook

words we are computing vectors for:
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/5470é\

2336
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'\
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34

CIVIC

(" )
16486

cooked

4 )
3463
1
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316380
36
7
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Now use cosine similarity:

nearest

neighbors

cat chef chicken civic cooked council
cat chef chicken civic cooked council
chef civic cooked council chef civic
cooked | cooked chef chef civic chef
civic council civic cooked | council cooked
council cat council cat cat cat
chicken | chicken cat chicken | chicken chicken




Issues with Counting-Based Vectors

Raw frequency count is probably a bad representation!

Counts of common words are very large, but not very useful
° “the”, “it”’ “they”

* Not very informative

There are many ways proposed for improving raw counts.
* Removing “stop words”.

 Down-weight less informative words.
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TF-IDF

TF (Term Frequency) - IDF (Inverse Document Frequency)

* Information Retrieval (IR) workhorsel!
A common baseline model

* Sparse vectors

 Words are represented by (a simple function of) the counts of nearby words
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TF-IDF

Consider a matrix of word counts across documents: term-document matrix.

document

tf(jw),|d) = # of times word w appears in document d

word/ ( # of documents )

idf(w) =1
idf(w) = log +# of documents in which word w occurs

tf-idf(w,d) = tf(w, d) - idf(w)



Term Frequency

tf, 4 = count(z,d)

As You Twelfth Julius

Likelt  Night Caesar HenryV
battle 1 0 7 13 word
vector
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

bag-of-words
(document
representation)



Inverse Document Frequency

IDF from 37 Shakespear plays:

. N
idf, = log (E) tf, ;4 = count(z,d)
I
. As You Twelfth Julius
df df
word ! Likelt  Night Caesar HenryV
Romeo 1 1.57
Falstaff 4 0.967 good 114 80 62 89
forest 12  0.489
battle 21  0.246 fool 36 o8 1 4
fool 36 0.012
good 37 0

sweet 37 0



TF-IDF

IDF from 37 Shakespear plays:

Wi d = tf; 4 x idf;

idf, = log (%)
word df  idf
Romeo 1 1.57
salad 1.27
Falstaff 4 0967
forest 12  0.489
battle 21  0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

As You Twelfth Julius

Likelt  Night Caesar eV
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036  0.0083
wit 0.049 0.044 0.018 0.022
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Pointwise Mutual Information (PMI)

Consider two random variables, X and Y.

Do two events X = x and Y = y occur together more often than if they were
independent?
Px,y(X, y)

PMI(x,y) = logz = s )

If they are independent, PMI = 0.
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PMI for Word Vectors

For words X and its context Y, each probability can be estimated using counts we
already computed.

— pX,Y(ny)
PMI(x,y) = log, )
G z #(%, 2 #(Z,

N: total count of words

#(-,"): co-occurrence count of two words
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Top co-occurrence counts with “chicken”

14464
7853
6276
5931
5213
3963
3282
2520
2438
2339
2127
1818
1745
1640
1594

’

the
and

of
in
To
1s
with

chicken
as

1525
1225
1061
940
906
889
869
828
1777
746
710
600
590
557
531

or
for

‘s
fried
on
was
that
are
by
from
1t
beetf
which
also
an

508
500
481
479
452
445
417
405
389
384
375
350
330
325
318

pork
meat
be
he
such
his
at
soup
made
rice
but
has
fish
other
this
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Words with largest PMI with “chicken”
10.

N©)

< J J J J J JJJ J 0 Ww

DD W W Oy 0 JO W JI

fried
chicken
pork
beef
soup
sauce
curry
cooked
lamb
dish
shrimp
cgg
sandwilch
dishes
meat

O O)Y O)Y O O O O O Oy O O O O O
P NN W w s DD 01T OY OO OO

O

robot
burger
recipe
vegetables
potatoes
goat
eggs

COow
pilizza
rice
ribs
tomatoes
Ccheese
duck
chili

or O O O O U1 O U1 O U1 U1 O O O)Y O

<~ J J J O O &0 W W W wWwWooodH

pig
breeds
vegetable
potato
goose
dixile
kung
pie
menu
steamed
tastes
beans
butter
barn
breed
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Positive PMI (PPMI)

Some have found benefit by truncating PMI at O ("positive PMI”).
PPMI(x,y) = max(0, PMI(x,y))

Negative PMI: words occur together less than we would expect, i.e., they are
anticorrelated.

These anticorrelation may need more data to reliably estimate.

However, negative PMI|s do seem reasonable.
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<~ J J J J J JJ 0 0w wwo

Largest PMls:

N W W W OOy 1 0O J O Ww Jd1o

fried
chicken
pork
beef
soup
sauce
curry
cooked
lamb
dish
shrimp
cgg

sandwich

PMIs close to zero:

.003
.003
.002
.002
.001
.000
.001
.001
.001
.001
.002
.003
.003

climbed
detailing
turkish

oaks
productivity
swing
structures
thirteenth
commentators
palmer
obstacles
horns
burning

= W O W O O O O J J J oy O

Smallest PMIs:

users
data
discussion
museum
below
editors
rallway
commilittee
elected
championship
archive
edits
deletion



Word2Vec

Learning representations with neural networks

Efficient Estimation of Word Representations in

Distributed Representations of Words and Phrases

Vector Space and their Compositionality
Tomas Mikolov Kai Chen Tomas Mikolov Ilya Sutskever Kai Chen
Google Inc. Google Inc. Google Inc.

Google Inc., Mountain View, CA Google Inc., Mountain View, CA

tmikolov@google.com kaichenlgoogle.com
Greg Corrado Jeffrey Dean
Google Inc., Mountain View, CA Google Inc., Mountain View, CA

gcorradoldgoogle.com jefflgoogle.com

Mountain View
kai@google.com

Mountain View
ilyasulgoogle.com

Mountain View
mikolov@google.com

Greg Corrado Jeffrey Dean
Google Inc. Google Inc.
Mountain View Mountain View
gcorradolgoogle.com jeff@google.com

[Mikolov et al., 2013]
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Word2Vec

Instead of counting, train a classifier (neural network) to predict context (e.g.
neighboring words).

* Training is self-supervised: no annotated data required, just raw text.

 Word embeddings learned via backpropagation.
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Word2Vec: Training Objectives

« CBOW (Continuous Bag-of-Words): learning representations that predict a
word given “a bag of context” (many-to-one prediction).

P(We | Wegt, ooy Weggo We_q, oo, W)

=N

quick brown fox jumped over

* Skipgram: learning representations that predict the context given a word

P(Wei1) ooy Weago Wee s oy Weege | W) = P(Wegq [ we) oo P(We_ge | we)

p(We_z|we) p(We_q|we) P(Wegrlwe) P(Wey2|we)

I'he quick brown fox jumped over the lazy dog

66



Skipgram

Randomly initialized (to be learned with backpropagation).

a [12 01 03 ... o1] a [21 05 13 .. 14]
aardvark 0.2 0.7 -0.4 1.1 aardvark -0.4 -0.7 0.5 - 0.1
able |-07 05 06 ... -0.8 able 02 01 04 ... -07
are 0.1 0.9 0.8 ... 07 are 0.5 0.8 0.1 cee 0.4
: eXp(fU»out ' winput)
pg(out | input) =
quev eXp(uv ' winput)
zyzzyva | 03 -02 07 ... 04]  zyzzyva 03 03 02 ... 06
Just a (log) linear model! NV l /

0 ={W,U}
W : V xd input embedding matrix

softmax

U : V x d output embedding matrix
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Skipgram

a [ 1.2
aardvark 0.2
able -0.7
. exp(Uout * Winput) are | 04
out | Input) =
pQ( | P ) ZUGV eXp(u,U . winput)
zyzzyva i 0.3

-0.1

0.7

0.5

0.9

-0.2

0.3
-0.4
0.6

0.8

0.7

14

0.1

1.1

. -0.8

0.7

0.4

a

aardvark

able

are

zyzzyva

2.1

-0.4

0.2

0.5

-0.3

-0.5

-0.7

0.1

0.8

0.3

1.3
0.5
0.4
0.1

0.2

U

. -0.7

1.4

0.1

0.4

0.6

it is a far ,[far better rest that I]go to , than I have ever known

Ly = — logpe(ﬁt—z | i‘t) - logpﬁ(xt—l |33t)

— log po(zt+1 | z¢) — log pe(wiyo | 74
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Skipgram

a [ 1.2
aardvark 0.2
able -0.7
. exp(Uout * Winput) are | 04
out | Input) =
pQ( | P ) ZUGV eXp(u,U . winput)
zyzzyva i 0.3

-0.1

0.7

0.5

0.9

-0.2

0.3
-0.4
0.6

0.8

0.7

14

0.1

1.1

. -0.8

0.7

0.4

a

aardvark

able

are

zyzzyva

2.1

-0.4

0.2

0.5

-0.3

-0.5

-0.7

0.1

0.8

0.3

1.3
0.5
0.4
0.1

0.2

U

. -0.7

1.4

0.1

0.4

0.6

it is a far ,[far better rest that I]go to , than I have ever known

Li = —logpg(wi—2 | xt) — log pg(@e—1 | 2¢)

— log po(zt+1 | z¢) — log pe(wiyo | 74
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Skipgram

a [ 1.2
aardvark 0.2
able -0.7
. exp(Uout * Winput) are | 04
out | Input) =
pQ( | P ) ZUGV eXp(u,U . winput)
zyzzyva i 0.3

-0.1

0.7

0.5

0.9

-0.2

0.3
-0.4
0.6

0.8

0.7

14

0.1

1.1

. -0.8

0.7

0.4

a

aardvark

able

are

zyzzyva

2.1

-0.4

0.2

0.5

-0.3

-0.5

-0.7

0.1

0.8

0.3

1.3
0.5
0.4
0.1

0.2

U

. -0.7

1.4

0.1

0.4

0.6

it is a far ,[far better rest that I]go to , than I have ever known

Li = —logpg(zi—2 | xt) — log pg(zi—1 | x4)

— log P9($t+1 | fﬂt) - logpe($t+2 | $t)

70



CBOW

a 12 01 03 ... 0.1 a 21 05 13 ... 14
aardvark 0.2 0.7 -0.4 - 1.1 aardvark -04 -0.7 0.5 “ee 0.1
. able .07 05 06 ... -08 able 0.2 01 04 ... -07
Use the context to predict .. |, oo o: . o
the center word
7vzzvva 03 0.2 0.7 ... 04 zyzzyva -0.3 03 0.2 ... 0.6
1 \
Po (-/I;f. I Lt—wy - J:t-f--u,') X EeXp | Uz, - % Z Wz, g [/ [/ 1 ,‘

ke{—w,...,—1,1,w}

it is a far ,[far better rest that IJgo to , than I have ever known

-Lt::3—'kﬁﬁpeﬁﬁt|$t—27$t—1:$t+1;$t+2)
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CBOW

a 12 01 03 ... 0.1 a 21 05 13 ... 14
aardvark 0.2 0.7 -0.4 - 1.1 aardvark -04 -0.7 0.5 “ee 0.1
. able .07 05 06 ... -08 able 0.2 01 04 ... -07
Use the context to predict .. |, oo o: . o
the center word
7vzzvva 03 0.2 0.7 ... 04 zyzzyva -0.3 03 0.2 ... 0.6
1 \
Po (-/I;f. I Lt—wy - J:t-f--u,') X EeXp | Uz, - % Z Wz, g [/ [/ 1 ,‘

ke{—w,...,—1,1,w}

it is a far , far[better rest that I go}to , than I have ever known

-Lt::3—'kﬁﬁpeﬁﬁt|$t—27$t—1:$t+1;$t+2)
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Skipgram with negative sampling

a

aardvark
able
- eXp(uout ' winput) are

out | Input) =
Po( |input) ZUEV eXp(uv'winput) .
zyzzyva

* Vocabulary size V: 50K — 30M
* Very expensive O(|V|)

1.2

0.2

-0.7

0.1

0.3

-0.1

0.7

0.5

0.9

-0.2

0.3

-0.4

0.6

0.8

0.7

0.1

1.1

-0.8

0.7

0.4

a

aardvark

able

are

zyzzyva

2.1

-0.4

0.2

0.5

-0.3

-0.5

-0.7

0.1

0.8

0.3

1.3

0.5

0.4

0.1

0.2

.. =07

1.4

0.1

0.4

0.6
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Skipgram with negative sampling

Treat the target word and a neighboring ¢

ontext word as positive examples.

Randomly sample other words outside of context to get negative samples.

Learn to distinguish between positive and negative samples with a binary

classifier.

log p((x,y)is a true pair) + Z
keC

log p((x, k) is a negative pair)

C = Negative Samples

p((z,c)is a true pair) = o(ue - wy) =

1
I+ exp(—u, - w,)
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(logistic) sigmoid: o(z)

1

1+ exp{—z}




Extensions

“You shall know &aweter by the company it keeps”

Node2Vec
[Grover and Leskovec 2016]

anything?
1 # 250.00 (Diabetes-non insulin dep
W insulin . ® 4 790.29 (Other abnormal glucos
#® Metformin

# 714.0 (Rheumatoid artt

® Methrotrexate # 710.0 (Systemic lupus eryt|

® Hydroxychloroquine Sulfate
® 443.0 (Raynaud’s syndrc

Concept2Vec
[Choi et al. 2016]

Groups Create
Create, like,
Join, comment,
post to, reshare,
interact with angry, haha,

wow E. ....................... X
Users |—: Posts |—

Fan,
interact with Contain
Create

\ »

Linkfrom | Domain |

Pages

World2Vec
[Facebook Al Research]

Topics
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Next

Building a simple text classifier

Ludwig the Cat
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