CS 489/698: Introduction to Natural Language Processing

Lecture 2: Words and Morphology

Instructor: Freda Shi

fhs@uwaterloo.ca

January 7th, 2026

2 WATERLOO

mailto:fhs@uwaterloo.ca

What is a word?

Lexical Semantics

“A single distinct meaningful element of speech or writing, used with others (or
sometimes alone) to form a sentence and typically shown with a space on either
side when written or printed.”

[Source: Oxford Languages]

What is a word?

Things in dictionaries?

“One of the most prolific areas of change and variation in English is vocabulary;
new words are constantly being coined to the name or describe new inventions or
innovations, or to better identify aspects of our rapidly changing world... Most
general English dictionaries are designed to include only those words that meet
certain criteria of usage across wide areas and over extended periods of time...”

[Source: Merriam-Webster; https://www.merriam-webster.com]

What is a word?

Things between spaces and punctuation?

This is English: The cat is cute. This is Chinese: JA1R o] &,
This is French: Le chat est mignon. This is Japanese: @ X H L Ly,
This is Spanish: El gato es lindo. This is Thai: uuasinga.

What is a word?

Smallest unit that can be uttered in isolation?
* You could utter this word in isolation: unimpressively.
* Also this one: impress.

* Probably also these when you talk about morphology: un, ive, ly.

Are they all words?

What is a word?

Each of the above points captures some, but very likely not all aspects of what a
word is.

42 chapters.
Nearly 900 pages.

Covers a lot of aspects of what makes a word word,
“to anyone who shares a fascination with words.”

The Oxford Handbook of

THE WORD

Outline of Today’s Lecture

Linguistic morphology
* The study of internal structures of words.

Lexical semantics

* The study of meanings of words.

Word tokenization

* The process of splitting texts into “words” (tokens).

colder

replayed \Q%]

gameplay @

coldler

re|lplay

y \Q%

bLay D

game

Morphology

The study of how words are built from smaller meaning-bearing units.

Types of morphemes:
* Stem: a core meaning-bearing unit.
« Affix: a piece that attaches to a stem, adding some function or meaning.
Prefix: unhappy, predefine
Suffix: cats, walked
Infix: (Malay) Gigi (teeth) — Gerigi (tooth blade)
Circumfix: (German) mach (root of machen; to make) - gemacht (made; past participle)

Interfix: speedometer

[See more in Chap. 6.2 of Doner. The Linguistic analysis of word and sentences structures]

10

Types of Word Formation

Inflection: adding morphemes to a word to indicate grammatical information.
* walk - walked

e cat — cats

Derivation: adding morphemes to a word to create a new word with a different
meaning.

* happy — happiness

» define — predefine

Compounding: combining two or more words to create a new word.
* key + board — keyboard
* law + suit - keyboard

* book + case — bookcase

11

Isolating Language

In languages like Classical Chinese, Vietnamese, and Thai
* Each word form typically consists of one single morpheme.

* There is little morphology other than compounding.

> Inflection > Derivation
17 AT, 1RAT, B4 5z ZR5<
T R jia: yi shu jia, artist
men: women, nimen, tamen
plural: we, you (pl.), they

- round, land) (P ‘gaodi
> COI I l po u n d i& I zemna %iﬂj, highland
oooooooooooooo
—_—— _
% *% grade, quality ' _5*§ | gé}‘wodén?
— high quality
=~ + copT‘ xauecrso - L IE BbICOKOKa4YeCTBEHHbIW
gao
ES e S high speed
= CKOPOCTHOM

12

Morphological Decomposition

Usually, morphological decomposition is simply splitting a word into its
morphemes:

walked = walk + ed
greatness = great + ness

But it can actually be a hierarchical structure:
unbreakable = un + (break + able)
internationalization = (((inter + nation) + al) + iz[e]) + tion

There is ambiguity in hierarchical decomposition!

The door is unlockable.

13

Morphology in NLP

Individual tasks that address morphology:

* Lemmatization: putting words/tokens in a standard format.

* Lemma: canonical/dictionary form of a word.

 Wordform: fully inflected or derived form of a word as it appears in text.

wordform lemma
run run
ran run
running run

Morphology in NLP

Individual tasks that address morphology:

« Stemming: reducing words to their stems (approximately) by removing affixes.
More conventional engineering-oriented approach used in applications such as
retrieval.

Caillou is an average, imaginative four-year-old boy with a
love for forms of transportive machinery such as rocket ships
and airplanes.

l

Caillou is an averag imagin four year old boi with a love for
form of transport machineri such as rocket ship and airplan

15

Lexical Semantics

Variability and Ambiguity in Words

Lemmatization and stemming tackles the problem of variability---multiple forms
could share the same or similar meanings.

On the other hand, one wordform could refer to multiple meanings.

Google crane

Images

SR ST AR
Vikipe ©
Sandhill crane i

3.
Crane (bird) - Wikipedia

W e I "’\v\"_‘ _. Pepupian
T ST i
BREaE S S WS S s S R
Crane Hire: Parts and Functions ... Whooping Crane - International Crane ...

17

Polysemy vs. Homonymy

* Polysemy: a word has multiple related meanings.

e Sheis a star.

* (pointing to the sky) The star is shining.

« Homonymy: a word has multiple meanings originated from different sources.

* | need to go to the bank as | don’t have enough cash.

* | am sitting on the bank of the river.

Question: which one do you think is the case for crane?

18

Synonyms

Synonyms (informal definition): words that have the same meanings according to
some criteria.

* couch vs. sofa
* big vs. large

* water vs. H,0

* There are very few (or no) examples of perfect synonymy.

 Synonymy is a relation between senses rather than words.

 How big is the plane? * Miss Nelson became a kind of big

» How large is the plane? sister to Benjamin.

* Miss Nelson became a kind of large
sister to Benjamin. (%)

19

Antonyms

Antonyms: senses that are opposite with respect to (at least) one dimensionality
of meaning.

e dark and light
* dark and bright
* hot and cold

* in and out

20

Hyponymy/Hypernymy, and Meronym/Holonym

* Sense A is a hyponym of sense B if A is more specific, denoting a subclass of B.

* Conversely, B is a hypernym of A.
* dog is a hyponym of animal

e corgi is a hyponym of dog

* Sense A is a meronym of sense B if A is a part of B.

* Conversely, B is a holonym of A.
* hand is a meronym of body

* Fingeris a meronym of hand

The WordNet database: https://wordnet.princeton.edu

21

https://wordnet.princeton.edu/

Word Sense Disambiguation

 Word-Sense Disambiguation (WSD): the task of determining which sense of a
word is used in a particular context, given a set of predefined possible senses.

* Relatedly, word sense induction (WSI) requires clustering word usages into
senses without predefined ground truths.

Default solution (as of 2026): encode the context of words with a pretrained
model, and train a neural network to predict the sense.

Or... prompting a pretrained language model.

22

The Role of Word Senses

A practical question: We now have powerful neural language models, which do
not distinguish word senses. Is WSD still a meaningful task?

A philosophical question in lexical semantics: Do discrete word senses even
“exist™?

[Li. 2024. Semantic minimalism and the continuous nature of polysemy. Mind and
Language]

23

Tokenization

* Tokenization: the process that converts running text (i.e., a sequence of
characters) into a sequence of tokens.

“Oh!” said Lydia stoutly, “I am not afraid; for
though I am the youngest, I'm the tallest.”

o '

tokenizer

y

“ Oh ! ” said Lydia stoutly , “ I am not afraid ; for
though I am the youngest , I 'm the tallest . ”

24

Conventions in Rule-Based Tokenizers

Penn Treebank Moses
don’t don’t don'’t
aren’t are n’'t aren 't
can’t cant can't
won't wo n't won 't

It is important to check and ensure consistency when comparing results across
different tokenizers.

Seenltk.tokenize, which also works for sentence tokenization.

[https://www.nltk.org/api/nltk.tokenize.html]

Tokenization across Languages

There is no explicit whitespace between words in some languages, and
tokenization becomes highly nontrivial in these cases.

7JkBH HAN SRE Chinese Treebank
“YaoMing reaches finals”

Wk BE HAN &2 REF]E Peking University
“Yao Ming reaches overall finals”

26

Word Types vs. Word Tokens

“oh ! ” said lydia stoutly , % 1
am not afraid ; for though 1 am
the youngest , 1 "m the tallest
/73 1 ! 1 oh A

2 . 1 said

2 ; 1 stoutly

2 am afraid 1 tallest

2 the for 1 though

2 W lydia yvoungest
_ 2 " 1 not "m y

44

27

Word Types vs. Word Tokens

3 1 ! 1 oh A
2 1 said

2 1 1 stoutly

2 am 1 afraid 1 tallest

2 the 1 for 1 though

2 W 1 lydia 1 youngest
2" not 1 "m Y

Type: a unique word (an entry in a vocabulary or dictionary) — 21 types.

Token: an instance of a type in the text — 29 tokens.

Type/Token Ratio

How does the type/token ratio change when adding more data?

0.4
type/token 0.35
ratio 0.3
0.25

0.2

0.15

0.1

0.05

10K

100K ™

tokens

10M

100M

29

Type/Token Ratio: Wikipedia vs. Twitter

How do the type/token ratio curves compare between Wikipedia and Twitter?

VS.

WIKIPEDIA

The Free Encyclopedia

Type/Token Ratio: Wikipedia vs. Twitter

How do the type/token ratio curves compare between Wikipedia and Twitter?

7 .
04 - @'QFW e <=English Wikipedia
type/token _ . w1
. 0.35 ol
ratio 03 - WIKIPEDIA Tweets
The Free Encyclopedia
0.25 -
0.2 -
0.15 -
0.1 -
0.05 -
0

10K 100K 1M 10M 100M
i tokens

224571
1189
1119

731
590
234
216
156
146
132
104
89
89
84
82
12
65
57
53
50
48
41

really

rly

realy

rlly
reallly
realllly
reallyy
relly
reallllly
rily
reallyyy
realllllly
reeeally
reaaally
reaally
reeeeally
reaaaally
reallyyyy
rilly
reallllllly
reeeeeally
reeally

38
37
35
31
30
277
277
26
25
22
21
19
18
16
15
15
15
15
15
14
14
13

really?
reaaaaally
reallyyyyy
reely
realllyyy
reaaly
realllyy
realllyyyy
realllllllly
reaaallly
really-
reeaally
reallllyyy
reaaaallly
reaallly
reallllllllly
reallllyy
reallyreally
realyy
reallllyyyy
reeeeeeally
reeeaaally

el el e e
O OO RFERENDN

< J J J 3 31 0O 0O 0O o WO wWwWw

reaaaaaally
rreally
reaallyy
realllllyyy
reeeallly
reeeeallly
reaaaly
reallyreallyreally
ryeally
really-really
reallys
reeeeeeeally
realky

reallyyyyyy

reallyyyyyyy
reeeaally

r3ally

raelly
reaaaaaaally
realllllllllllly
reallllllyyy
reeeeaaally

o1 O O O U1 O U1 O U1 U O O O)Y O O O OO O O 1 I

reeeealy
reeceeeeeeceally
relaly
r-e-a-1-1-y
r-really
reaaaaaallly
realllllllllly
realllyyyyy
realyl
reeeaaaally
reeeaaallly
reeeaaalllyyy
reaaaaallly
reaaaalllly
reaalllyy
reallllllllllllly
reallllllllllly
reeallyyy
reeeecaaallly
reeeecaally
reeceeceeceecally
rellly

W W wwwwwwwdbdtkdrddrdrddrddrd bSO O

rrly
rrrreally
reaaaaly
reaaalllly
reaaalllyy
reaalllly
reaalllyyy
realllllllyyyy
realllllyyyy
reeaaaally
reeealy
reeceeceeeeeceally
rllly

r34lly
rleally
reaaaaaaaally
reaaaaaly
reaaaallllly
reaaaallyy
reaaallyy
reaallllly
reaallyyyy

N W W W WwWwwwwwbwwwwwwwwwwwww

realiy

realllllll1111111111y

reallllllyy
reallllllyyyy
reallllllyyyyyyy
reallllyyyyy
realluy

really)

reallyl
reallyyyyyyyyy
reeaaallly
reecaalllly
reeaalllyyy
reeaaly
reeallly

reealy
reeeaaallllyyy
reeeaallly
reeeeaaaaally
reeeealllly
reeeecealllly
reaaaaaaaaaally

NN NN NN NN NN DNDNDNDNDNDNDNDNDNDNDNDNDNDNDDDNDDDDDDDDNDDND

reaaaaaaaaally
reaaaaaaaallly
reaaaaaalllllyyy
reaaaaallllly
reaaaaalllly
reaaalllllyyy
reaaallllyyy
reaaalllyyy
reaallllyy
reaallllyyy
reaallyyy

reaalyy
realllllll1l111111111y
reallllllll1111111ly
realllllllyy
realllllllyyyyy
reallllllyyyyy
realllllyy
realllllyyyyyy

reallllyyyyyy

realllyyyyyy
really*

NN DNDDDNDDDNDODDNDDNDDNDDNNDNNDDNDDNDDDNDDDNDDNDDNDDNDDNDDNDDNDDNDDND

really/

reallyyyyyyyy
reallyyyyyyyyyyyy

realyyy
reaqglly

reeaaally
reeaallly
reeaalllyy
reeaallyy
reeallyy
reeeallyy
reeeeaaaalllyyy
reeeeaaaally
reeeeaaalllly
reeeeaaallllyyyy
reeeeallllyyy
reeeeallyyy
reeeeeaaallllly
reeeeeaaally
reeeeeaally
reeeeeallly
reeeeeealy

R~ PRPPRPPRPRPRPPRPPRPRREPREPERRRREREDDDDDDDDDDDDDDDDNDIDN

reeely
rellys
rellyy
regally
rlyyy

rlyyyy
rreeaallyy

rrreally

r-r-r-really

r3aly

r3ly

raaahhhlllaaayyyy
raeally

re-e-e-eally
re—eaaaaaaaly
re—-he—-he-he-ealy
re—-he—-he-heeeeally
re3ally

rea(l)ly
reaaaaaaaaaaaaaaaaaaally
reaaaaaaaaaaaaaaaally
reaaaaaaaaaaaaaaallllly

PFRPRPRPRPRRPRPRRPPRPRPRPRPRPRERERRPRPRPRPRRERRERERRRRERERERERRRR

reaaaaaaaaaaaaaally
reaaaaaaaaaaaally
reaaaaaaaaaaallllly
reaaaaaaaaaaalllly
reaaaaaaaaaaally
reaaaaaaaaaalllllllyyyyyyyyy

reaaaaaaaaallly

reaaaaaaaallllllyyyyy

reaaaaaaaalllly

reaaaaaaaallllyyyy

reaaaaaalllly
reaaaaaalllyyyy

reaaaaalllllllyyyy

reaaaaalllllyyy

reaaaaalllllyyyy
reaaaaalllllyyyyy
reaaaaalllllyyyyyyy

reaaaaallllyy

reaaaaallllyyyyy

reaaaaallyy
reaaaalllllly
reaaaallllllyy
reaaaalllllyyy

reaaaalllllyyyyy

reaaaallllyyy
reaaaallllyyyyy
reaaaalllyy
reaaaalllyyy
reaaaalllyyyy
reaaaallyyy

HF R R RPRPRPRPRRRRRPRRPRRERRRRRRRER &

el

reaaallllllly

reaaalllllllyyy

reaaallllly

reaaalllllyyyy

reaaalllllyyyyy

reaaalllyyyyy

reaaallyyy

reaaallyyyy

reaalllllly

reaalllllyyyy

reaallllyyyy

reaalllyyyy

reaalllyyyyy

reaalllyyyyyy

real (ly

realaaay

realkly

reall (y

reallhy
realllll111111111111111111111111111111
1111111111111 1171111111111111111111y
realllll11111111111111111111111111111
111111111111111111111y
realllll11111111111111111111111111111
11111111111y
realllll11111111111111111111111111111y
realllll111111111111111111111111y
realllll11111111111111111111111y
realllll111111111111111111yyyyy
realllll11111111111111111y

e e el el el e e e el e e e e e e T e T e e S S S S S

realllllll111111111111y
reallllllllllllyyyyyy
reallllllllllyyyyy
realllllllllyyy
realllllllllyyyy
realllllllllyyyyy
realllllllllyyyyyy
reallllllllyyyy
reallllllllyyyyyyy
reallllllllyz
realllllyly
realllllyyyyy

reallllyyyyyyy
reallllyyyyyyyyy
realllylyyy
realllyyyyyyy

realllyyyyyyyyy
really(really

really//

really/really/really

reallyl00

really2x

really:")

really™”

really

reallyii
reallyreallyreallyreallyreallyr331lly
reallyreallyreallyreallyreallyreally
reallyreallyreallyreallyreallyreally
reallyreallyreallyreallyreally

HFHR R R RPRPRPRPRRPRRPRPRPRPRPRPRERRPRRPRPRPRPERERRERPRRPRPRRERERRRERE

reallyyyyyyyyyyy
reallyGs

realoly

realys

realyyyyy
realely

reawly
ree-hee-heally
reeaaaaaaaaaaaaaaaaalllllllllyyy
reeaaaaaaaalllllllly
reeaaaaalllllly
reeaaaallly
reeaaalllly
reeaaallllyyy
reeaaallyyy
reeaaaly
reeaalllllyyy
reeaallllyyy
reeaallyyy
reealllly
reealllyyy
reealllyyyyy
reeeaaaaaaaly
reeeaaaaally
reeeaaaallllly
reeeaaaallllyyy
reeeaaaallllyyyy
reeeaaaallly
reeeaaaalllyyy
reeeaaaaly
reeeaaalllllyyyy

P PP R RPRRPRPRRPRPRRPRPRRPRPRPRRRRPRRRRRRRRRRRRRR P&

reeeaaallllyyyy
reeeaaallyy
reeeaaallyyy
reeeaaaly
reeeaalllly
reeeaallyy
reeeaallyyy
reeeallllly
reeealllly
reeeallllyy
reeeallllyyy
reeeallllyyyy
reeealllyyy
reeealllyyyy
reeeallys

reeeeaaaaaaallllllyyyyyyy
reeeeaaaaaallllllyyyyy
reeeeaaaaallllllly

reeeeaaaaalllly
reeeeaaaaallly

reeeeaaaaalllyyy

reeeeaaaalllly

reeeeaaaallllyyyyyy

reeeeaaallllyy
reeeeaaalllyy
reeeeaaallyyy
reeeeaaaly
reeeeaallly
reeeeaalllyy
reeeeaaly
reeeeallllly

F P PR RRPRRRPRRRPRPRRPRPRRPRRRPRRRRRRRRRRRR R B

reeeeallllyy
reeeealllyy
reeeealllyyy
reeeealllyyyy
reeeeeaaaaallllllly
reeeeeaaaaally
reeeeeaaalllly
reeeeeaaallllyyy
reeeeeaaallly
reeeeeallllyyy
reeeeealy
reeeeeeaaaaaally
reeeeeeaaaaalllllyyyy
reeeeeeaaaaally
reeeeeeaaaalllly
reeeeeeaally
reeeeeeaaly
reeeeeeallllly
reeeeeealllyyyy
reeeeeeeaaaallly
reeeeeeeaally
reeeeeeeallyy
reeeeeecealy
reeeeeeeecaaaaaaaalllllyyyyyy
reeceeeceeeceaaaaaaaaalllllllllyyyyyyyy
reeeeeeeeeaaaaaaallllllllyyyyyyyy
reeeeeeeeeaaaaaalllyyy
reeeeeeeeceaaally
reeeeeeeeceaally
reeeeeeceeceallllly
reeeeeeeeeecaaally

F R R R R R RRPRPRRPRRRRPRRRRRRRRRRR R B 2R

reeeeeeeeeceaally 1 rlyy

reeeeeeceeceeeally 1 rraarreellyy
reeeceeceeeceeceecally 1l rreaalllyyy
reeceeceeeeeeeceaaally 1l rreaally
reeceeceeeeeeeeeceaaaallly 1l rreeaaallllyyyy
reececeeceeceeceeeceeally 1l rreeaallllyy
reeceeceececeecececeeceeceeceeceesallll1l111111111111111111111y 1l rreeaallyyy

reeeeeeelly 1l rreealy

reeeeeely 1 rreeeaaaaallllyyyy

reeeeelly 1 rreeeaaallllyyy

reeeeely 1 rreeeeeeaaaaallllllllyyyyyy
reeeelllllyyy 1l rreeeeeeallly

reeellllyy 1l rreeeeeely

reellly 1l rrreallyyy

reelllyy 1l rrreeeaaalllyyy

reheheally 1l rrreeealllyyy

relally 1l rrreeeeaalllllyy

rellllllly 1l rrreeeeallly

relllly 1l rrrlyyy

rellyrell 1l rrrreeeally

rellzy 1l rrrreeeeeeaaaaallllllllyyyyyy
rieeely 1l rrrrreeeeaaalllly

rlllllly 1l rrrrreeeeaaalllyy

rllllllyy 1l rrrrrreally

rlllly 1l rrrrrrealy

rllyrlly 1l rrrrrrreeeeeeaaaalllllyyyyyyy
rllyy 1l rrrrrrrrrreally

rllyyy 1l rrrrrrrrrrrrrrrreeeeceeeeceeceaaaaaaalllllllyyyyyy

rlyrlyrly

How are words distributed?

224571
1189
1119

731
590
234
216
156
146
132
104
89
89
84
82
12
65

really
rly

realy
rlly
reallly
realllly
reallyy
relly
reallllly
rily
reallyyy
realllllly
reeeally
reaaally
reaally
reeceeally
reaaaally

R =l I N e e N e e e

rreeeeeeaaaaallllllllyyyyyy
rreeeeeeallly

rreeeeeely

rrreallyyy

rrreeeaaalllyyy

rrreeealllyyy
rrreeeeaalllllyy

rrreeeeallly

rrrlyyy

rrrreeeally
rrrreeeeeeaaaaallllllllyyyyyy
rrrrreeeeaaalllly
rrrrreeeeaaalllyy

rrrrrreally

rrrrrrealy
rrrrrrreeeeeeaaaalllllyyyyyyy
rrrrrrrrrreally
rrrrrrrrrrrrrrrreeeeeeeeeeecaaaaaaalllllllyyyyyy

38

Zipf’'s Law

Frequency of a word is (roughly) inversely proportional to its rank in the word
frequency list.

70
60
50
40

30

count (in millions)

“long tail”

20

10

39

Tokenization in Modern NLP Systems

There are so many word types, but the words have shared internal structures and
meanings (recall what we’ve talked about in morphology).

Modern NLP systems always convert tokens into numerical indices for further
processing. Can we do better than assigning each word a unique index?

Raw text input

Raw text output

40

Data-Driven Subword-Based Tokenizers

Data-driven tokenizers offer an option that learns the tokenization rules from
data, tokenizing texts into subword units (a.k.a, wordpieces) using statistics of
character sequences in the dataset.

Two most popular methods:
* Byte Pair Encoding (BPE): Gage (1994), Sennrich et al. (2016).
» SentencePiece: Kudo (2018).

[Gage, P. (1994). A new algorithm for data compression. The C Users Journal, 12(2), 23-38]]

[Sennrich, R., Haddow, B., & Birch, A. (2016). Neural machine translation of rare words with subword
units. In Proceedings of ACL (pp. 1715-1725).]

[Kudo, T. (2018). Subword Regularization: Improving Neural Network Translation Models with Multiple
Subword Candidates. In Proceedings of ACL (pp. 66-75).]

41

Byte Pair Encoding

Originally introduced by Gage (1994) for data compression, and later adapted

(and revived) by Sennrich et al. (2016) for NLP.

Key idea: merge symbols with a greedy algorithm.

Initialize the vocabulary with the set of characters, and iteratively merge the most
frequent pair of symbols to extend the vocabulary.

-

Training Corpus

C

C
C
C

a

a
O
a

t
L s
n catenatilion
tegor1zatilon

J

42

Byte Pair Encoding

[

Training Corpus

C

C
C
C

a

d
O
a

t
t
n
t

S
catenatilion
e goril1zatililon

7

\

Initial Vocabulary
acegilnors¢tz

7

\

Count Symbol-Pair Frequencies
<a t>: o0, <c a>: 4, <o n>:

3,

7

\

Update Vocabulary
a cegilnors ¢tz at

43

Byte Pair Encoding

[

Training Corpus
C a

catenatlion

t
t s
n
tegor1zatilon

C 4a
Cc O
C a

7

Current Vocabulary
acegilnors tz at

\

7

Count Symbol-Pair Frequencies
<c at>: 4, <o n>: 3,

\

Update Vocabulary
a cegilnors ¢tz at cat

\

Repeat this process until the vocabulary reaches the desired size.

44

Byte Pair Encoding

The BPE proposal is not optimal in terms of compression rate under the same
vocabulary size.

Training Corpus

C

C
C
C

a

a
O
a

t
t
n
t

S
catenatilion
e gor 1 zatilon

J

\

7

Terminate Vocabulary
a cegilnors ¢tz at cat

7

\

A Better Vocabulary
a cegilinors t z cat on

45

Apply Trained BPE to New Corpus

In addition to having the tokens, we will also need to know the “merge rules.”

Starting from individual characters, and merge following the rules.

- . N\

Terminate Vocabulary Word to be tokenized
acegilnorstzat cat category
Merge Rules Result

a t — at cat e g o r vy

c at — cat

N\ /L

If there is unknown character, add a new term (unlikely in real practice).

SentencePiece Tokenization

Kudo (2018): find the vocabulary for a unigram language model that maximizes
the likelihood of the training corpus.

n

P((x1,22,...,2n)) = | | P(z:)

1=1

. . count(z;)
P(xz;) := optional-smoothing (
D ey count(x)

The Google command-Lline toolkit that implements this algorithm and some
others (including BPE): https://github.com/google/sentencepiece

47

https://github.com/google/sentencepiece

Byte-Level BPE

A practical question: How do large language models tokenize texts from different
languages, with a unified tokenizer and fixed vocabulary size?

That's great
5468 61 /74 2019732067 7265061 /74 20 1F44D

All in hexadecimal!

Prepend zeros to fix the length of tokens (to ensure the unique decoding), and do
BPE on the bit/multi-bit level.

48

Next

Word Embeddings

49

	Default Section
	Slide 1: CS 489/698: Introduction to Natural Language Processing Lecture 2: Words and Morphology

	morphology
	Slide 2: What is a word?
	Slide 3: What is a word?
	Slide 4: What is a word?
	Slide 5: What is a word?
	Slide 6: What is a word?
	Slide 7: Outline of Today’s Lecture
	Slide 8
	Slide 9
	Slide 10: Morphology
	Slide 11: Types of Word Formation
	Slide 12: Isolating Language
	Slide 13: Morphological Decomposition
	Slide 14: Morphology in NLP
	Slide 15: Morphology in NLP

	lexical semantics
	Slide 16: Lexical Semantics
	Slide 17: Variability and Ambiguity in Words
	Slide 18: Polysemy vs. Homonymy
	Slide 19: Synonyms
	Slide 20: Antonyms
	Slide 21: Hyponymy/Hypernymy, and Meronym/Holonym
	Slide 22: Word Sense Disambiguation
	Slide 23: The Role of Word Senses

	tokenization
	Slide 24: Tokenization
	Slide 25: Conventions in Rule-Based Tokenizers
	Slide 26: Tokenization across Languages
	Slide 27: Word Types vs. Word Tokens
	Slide 28: Word Types vs. Word Tokens
	Slide 29: Type/Token Ratio
	Slide 30: Type/Token Ratio: Wikipedia vs. Twitter
	Slide 31: Type/Token Ratio: Wikipedia vs. Twitter
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: How are words distributed?
	Slide 39: Zipf’s Law
	Slide 40: Tokenization in Modern NLP Systems
	Slide 41: Data-Driven Subword-Based Tokenizers
	Slide 42: Byte Pair Encoding
	Slide 43: Byte Pair Encoding
	Slide 44: Byte Pair Encoding
	Slide 45: Byte Pair Encoding
	Slide 46: Apply Trained BPE to New Corpus
	Slide 47: SentencePiece Tokenization
	Slide 48: Byte-Level BPE
	Slide 49: Next

