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What is a word?

Lexical Semantics

“A single distinct meaningful element of speech or writing, used with others (or
sometimes alone) to form a sentence and typically shown with a space on either
side when written or printed.”

[Source: Oxford Languages]



What is a word?

Things in dictionaries?

“One of the most prolific areas of change and variation in English is vocabulary;
new words are constantly being coined to the name or describe new inventions or
innovations, or to better identify aspects of our rapidly changing world... Most
general English dictionaries are designed to include only those words that meet
certain criteria of usage across wide areas and over extended periods of time...”

[Source: Merriam-Webster; https://www.merriam-webster.com]




What is a word?

Things between spaces and punctuation?

This is English: The cat is cute. This is Chinese: JA1R o] &,
This is French: Le chat est mignon. This is Japanese: @ X H L Ly,
This is Spanish: El gato es lindo. This is Thai: uuasinga.



What is a word?

Smallest unit that can be uttered in isolation?
* You could utter this word in isolation: unimpressively.
* Also this one: impress.

* Probably also these when you talk about morphology: un, ive, ly.

Are they all words?



What is a word?

Each of the above points captures some, but very likely not all aspects of what a
word is.

42 chapters.
Nearly 900 pages.

Covers a lot of aspects of what makes a word word,
“to anyone who shares a fascination with words.”

The Oxford Handbook of

THE WORD




Outline of Today’s Lecture

Linguistic morphology
* The study of internal structures of words.

Lexical semantics

* The study of meanings of words.

Word tokenization

* The process of splitting texts into “words” (tokens).



colder

replayed \Q%]

gameplay @




coldler

re|lplay

y \Q%

bLay D

game




Morphology

The study of how words are built from smaller meaning-bearing units.

Types of morphemes:
* Stem: a core meaning-bearing unit.
« Affix: a piece that attaches to a stem, adding some function or meaning.
Prefix: unhappy, predefine
Suffix: cats, walked
Infix: (Malay) Gigi (teeth) — Gerigi (tooth blade)
Circumfix: (German) mach (root of machen; to make) - gemacht (made; past participle)

Interfix: speedometer

[See more in Chap. 6.2 of Doner. The Linguistic analysis of word and sentences structures]
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Types of Word Formation

Inflection: adding morphemes to a word to indicate grammatical information.
* walk - walked

e cat — cats

Derivation: adding morphemes to a word to create a new word with a different
meaning.

* happy — happiness

» define — predefine

Compounding: combining two or more words to create a new word.
* key + board — keyboard
* law + suit - keyboard

* book + case — bookcase
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Isolating Language

In languages like Classical Chinese, Vietnamese, and Thai
* Each word form typically consists of one single morpheme.

* There is little morphology other than compounding.

> Inflection > Derivation
17 AT, 1RAT, B4 5z ZR5<
T R jia: yi shu jia, artist
men: women, nimen, tamen
plural: we, you (pl.), they

- round, land ) ( P ‘gaodi
> COI I l po u n d i& I zemna %iﬂj, highland
oooooooooooooo
—_—— _
% *% grade, quality ' _5*§ | gé}‘wodén?
— high quality
=~ + copT‘ xauecrso - L IE BbICOKOKa4YeCTBEHHbIW
gao
ES e S high speed
# = CKOPOCTHOM
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Morphological Decomposition

Usually, morphological decomposition is simply splitting a word into its
morphemes:

walked = walk + ed
greatness = great + ness

But it can actually be a hierarchical structure:
unbreakable = un + (break + able)
internationalization = (((inter + nation) + al) + iz[e]) + tion

There is ambiguity in hierarchical decomposition!

The door is unlockable.
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Morphology in NLP

Individual tasks that address morphology:

* Lemmatization: putting words/tokens in a standard format.

* Lemma: canonical/dictionary form of a word.

 Wordform: fully inflected or derived form of a word as it appears in text.

wordform lemma
run run
ran run
running run




Morphology in NLP

Individual tasks that address morphology:

« Stemming: reducing words to their stems (approximately) by removing affixes.
More conventional engineering-oriented approach used in applications such as
retrieval.

Caillou is an average, imaginative four-year-old boy with a
love for forms of transportive machinery such as rocket ships
and airplanes.

l

Caillou is an averag imagin four year old boi with a love for
form of transport machineri such as rocket ship and airplan
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Lexical Semantics




Variability and Ambiguity in Words

Lemmatization and stemming tackles the problem of variability---multiple forms
could share the same or similar meanings.

On the other hand, one wordform could refer to multiple meanings.

Google crane

Images

SR ST AR
Vikipe ©
Sandhill crane i

3.
Crane (bird) - Wikipedia

W e I "’\v\"_‘ _. Pepupian
T ST i
BREaE S S WS S s S R
Crane Hire: Parts and Functions ... Whooping Crane - International Crane ...
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Polysemy vs. Homonymy

* Polysemy: a word has multiple related meanings.

e Sheis a star.

* (pointing to the sky) The star is shining.

« Homonymy: a word has multiple meanings originated from different sources.

* | need to go to the bank as | don’t have enough cash.

* | am sitting on the bank of the river.

Question: which one do you think is the case for crane?
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Synonyms

Synonyms (informal definition): words that have the same meanings according to
some criteria.

* couch vs. sofa
* big vs. large

* water vs. H,0

* There are very few (or no) examples of perfect synonymy.

 Synonymy is a relation between senses rather than words.

 How big is the plane? * Miss Nelson became a kind of big

» How large is the plane? sister to Benjamin.

* Miss Nelson became a kind of large
sister to Benjamin. (%)
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Antonyms

Antonyms: senses that are opposite with respect to (at least) one dimensionality
of meaning.

e dark and light
* dark and bright
* hot and cold

* in and out
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Hyponymy/Hypernymy, and Meronym/Holonym

* Sense A is a hyponym of sense B if A is more specific, denoting a subclass of B.

* Conversely, B is a hypernym of A.
* dog is a hyponym of animal

e corgi is a hyponym of dog

* Sense A is a meronym of sense B if A is a part of B.

* Conversely, B is a holonym of A.
* hand is a meronym of body

* Fingeris a meronym of hand

The WordNet database: https://wordnet.princeton.edu
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https://wordnet.princeton.edu/

Word Sense Disambiguation

 Word-Sense Disambiguation (WSD): the task of determining which sense of a
word is used in a particular context, given a set of predefined possible senses.

* Relatedly, word sense induction (WSI) requires clustering word usages into
senses without predefined ground truths.

Default solution (as of 2026): encode the context of words with a pretrained
model, and train a neural network to predict the sense.

Or... prompting a pretrained language model.

22



The Role of Word Senses

A practical question: We now have powerful neural language models, which do
not distinguish word senses. Is WSD still a meaningful task?

A philosophical question in lexical semantics: Do discrete word senses even
“exist™?

[Li. 2024. Semantic minimalism and the continuous nature of polysemy. Mind and
Language]
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Tokenization

* Tokenization: the process that converts running text (i.e., a sequence of
characters) into a sequence of tokens.

“Oh!” said Lydia stoutly, “I am not afraid; for
though I am the youngest, I'm the tallest.”

o '

tokenizer

y

“ Oh ! ” said Lydia stoutly , “ I am not afraid ; for
though I am the youngest , I 'm the tallest . ”
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Conventions in Rule-Based Tokenizers

Penn Treebank Moses
don’t don’t don'’t
aren’t are n’'t aren 't
can’t cant can't
won't wo n't won 't

It is important to check and ensure consistency when comparing results across
different tokenizers.

Seenltk.tokenize, which also works for sentence tokenization.

[https://www.nltk.org/api/nltk.tokenize.html]



Tokenization across Languages

There is no explicit whitespace between words in some languages, and
tokenization becomes highly nontrivial in these cases.

7JkBH HAN SRE Chinese Treebank
“YaoMing reaches finals”

Wk BE  HAN &2 REF]E  Peking University
“Yao Ming reaches overall finals”
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Word Types vs. Word Tokens

“oh ! ” said lydia stoutly , % 1
am not afraid ; for though 1  am
the youngest , 1 "m the tallest
/73 1 ! 1 oh A

2 . 1 said

2 ; 1 stoutly

2 am afraid 1 tallest

2 the for 1 though

2 W lydia yvoungest
\_ 2 " 1 not "m y

44
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Word Types vs. Word Tokens

3 1 ! 1 oh A
2 1 said

2 1 1 stoutly

2 am 1 afraid 1 tallest

2 the 1 for 1 though

2 W 1 lydia 1 youngest
2" not 1 "m Y

Type: a unique word (an entry in a vocabulary or dictionary) — 21 types.

Token: an instance of a type in the text — 29 tokens.



Type/Token Ratio

How does the type/token ratio change when adding more data?

0.4
type/token 0.35
ratio 0.3
0.25

0.2

0.15
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10K

100K ™

# tokens

10M

100M
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Type/Token Ratio: Wikipedia vs. Twitter

How do the type/token ratio curves compare between Wikipedia and Twitter?

VS.

WIKIPEDIA

The Free Encyclopedia




Type/Token Ratio: Wikipedia vs. Twitter

How do the type/token ratio curves compare between Wikipedia and Twitter?

7 .
04 - @'QFW e <=English Wikipedia
type/token _ . w1
. 0.35 ol
ratio 03 - WIKIPEDIA Tweets
The Free Encyclopedia
0.25 -
0.2 -
0.15 -
0.1 -
0.05 -
0
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How are words distributed?
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Zipf’'s Law

Frequency of a word is (roughly) inversely proportional to its rank in the word
frequency list.

70
60
50
40

30

count (in millions)

“long tail”

20

10
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Tokenization in Modern NLP Systems

There are so many word types, but the words have shared internal structures and
meanings (recall what we’ve talked about in morphology).

Modern NLP systems always convert tokens into numerical indices for further
processing. Can we do better than assigning each word a unique index?

Raw text input

Raw text output
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Data-Driven Subword-Based Tokenizers

Data-driven tokenizers offer an option that learns the tokenization rules from
data, tokenizing texts into subword units (a.k.a, wordpieces) using statistics of
character sequences in the dataset.

Two most popular methods:
* Byte Pair Encoding (BPE): Gage (1994), Sennrich et al. (2016).
» SentencePiece: Kudo (2018).

[Gage, P. (1994). A new algorithm for data compression. The C Users Journal, 12(2), 23-38]]

[Sennrich, R., Haddow, B., & Birch, A. (2016). Neural machine translation of rare words with subword
units. In Proceedings of ACL (pp. 1715-1725).]

[Kudo, T. (2018). Subword Regularization: Improving Neural Network Translation Models with Multiple
Subword Candidates. In Proceedings of ACL (pp. 66-75).]
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Byte Pair Encoding

Originally introduced by Gage (1994) for data compression, and later adapted

(and revived) by Sennrich et al. (2016) for NLP.

Key idea: merge symbols with a greedy algorithm.

Initialize the vocabulary with the set of characters, and iteratively merge the most
frequent pair of symbols to extend the vocabulary.

-

Training Corpus

C

C
C
C

a

a
O
a

t
L s
n catenatilion
tegor1zatilon

J
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Byte Pair Encoding

[

Training Corpus

C

C
C
C

a

d
O
a

t
t
n
t

S
catenatilion
e goril1zatililon

7

\

Initial Vocabulary
acegilnors¢tz

7

\

Count Symbol-Pair Frequencies
<a t>: o0, <c a>: 4, <o n>:

3,

7

\

Update Vocabulary
a cegilnors ¢tz at
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Byte Pair Encoding

[

Training Corpus
C a

catenatlion

t
t s
n
tegor1zatilon

C 4a
Cc O
C a

7

Current Vocabulary
acegilnors tz at

\

7

Count Symbol-Pair Frequencies
<c at>: 4, <o n>: 3,

\

Update Vocabulary
a cegilnors ¢tz at cat

\

Repeat this process until the vocabulary reaches the desired size.
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Byte Pair Encoding

The BPE proposal is not optimal in terms of compression rate under the same
vocabulary size.

Training Corpus

C

C
C
C

a

a
O
a

t
t
n
t

S
catenatilion
e gor 1 zatilon

J

\

7

Terminate Vocabulary
a cegilnors ¢tz at cat

7

\

A Better Vocabulary
a cegilinors t z cat on
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Apply Trained BPE to New Corpus

In addition to having the tokens, we will also need to know the “merge rules.”

Starting from individual characters, and merge following the rules.

- . N\

Terminate Vocabulary Word to be tokenized
acegilnorstzat cat category
Merge Rules Result

a t — at cat e g o r vy

c at — cat

N\ /L

If there is unknown character, add a new term (unlikely in real practice).



SentencePiece Tokenization

Kudo (2018): find the vocabulary for a unigram language model that maximizes
the likelihood of the training corpus.

n

P((x1,22,...,2n)) = | | P(z:)

1=1

. . count(z;)
P(xz;) := optional-smoothing (
D ey count(x)

The Google command-Lline toolkit that implements this algorithm and some
others (including BPE): https://github.com/google/sentencepiece
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Byte-Level BPE

A practical question: How do large language models tokenize texts from different
languages, with a unified tokenizer and fixed vocabulary size?

That's great
5468 61 /74 2019732067 7265061 /74 20 1F44D

All in hexadecimal!

Prepend zeros to fix the length of tokens (to ensure the unique decoding), and do
BPE on the bit/multi-bit level.
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Next

Word Embeddings
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