CS 489/698 Introduction to Natural Language Processing
Assignment 2: Decipher PCFG from Transformers

Instructors: Freda Shi and Victor Zhong
Released: Friday, February 13th, 2026
Due Date: Friday, March 6th, 2026 at 11:59 PM ET (Waterloo Time)

Winter 2026

1 Overview

In this assignment, you will act as a “grammar cryptanalyst.” For each subtask, we (the instructors)
secretly define a probabilistic context-free grammar (PCFG), sample a large synthetic corpus from
it, and train a small Transformer language model on that corpus using the standard AdamW
optimizer. For simplicity, the Transformers’ tokens are exactly the terminals of the PCFG, i.e,,
there is no subword tokenization. You will be given the trained Transformer language model, but
not the original PCFG.

Your goal is to reconstruct the underlying PCFGs (their production rules and probabilities) as
accurately as possible from the Transformers. You may use the Transformers in any way you like
(e.g., as a distribution proposer, by analyzing its hidden states, etc.) to recover the grammar. Your
submission will be evaluated based on how well your recovered PCFG matches the true PCFG in
terms of likelihood on a held-out test set of strings.

2 Provided Material

For each subtask, you will receive:
* A pretrained Transformer language model checkpoint.
Additionally, we also include

¢ Starter code to (1) load the model and the vocabulary, (2) compute next-token probabilities, (3)
sample sequences. Example execution command: python sampling.py checkpoints/pcfg3.pt
--num-samples 10;

e A Python 3.12 requirement file requirements. txt that specifies the dependencies for the starter
code, where you may create a virtual environment by python3.12 -m venv .venv, activate it
by source .venv/bin/activate (tested on Linux), and install the dependenciesby pip install
-r requirements.txt;

* A .csv file containing an example PCFG (PCFG 1) for Task 1 assigning uniform probabilities,
which you can use as a reference of format;

* A script trainer.py that we use to train Transformers for your reference.



3 Submission Format

Your final submission should be made on LEARN, which includes:

¢ Grammar filesnamed pcfgl.csv, pcfg2.csv, pcfg3.csv, respectively for each subtask, con-
taining the production rules and their probabilities, with detailed formats specified in the
starter code. Note: Please make sure the grammar files are in the root of your zip file (not
inside a subfolder); otherwise we may not be able to grade your submission. The required
columns are

ID: index of the rule, you can fill in any unique identifier for each rule (e.g., 1, 2, 3, ...).

LHS: the left-hand side of a rule, must be a nonterminal or preterminal symbol.

LHS Type: the type of the LHS symbol, either “nonterminal” or “preterminal”.

RHS: the right-hand side of a rule, must be either two nonterminals (for nonterminal expan-
sion rules) or one terminal (for preterminal rules).

Probability: the probability of the rule, which should be a number between 0 and 1, and for
every nonterminal A, the probabilities of all rules with A as the LHS should sum to 1.

Please make sure your grammar files contain all rules in your PCFG, including the ones pro-
vided in the task description.

* Your code that is used to generate the grammar files from the provided Transformer check-
points under code/. It is okay to have separate code for different subtasks, or have subfolders
in code/ for different subtasks. While you are encouraged to make sure the code executes and
directly output the grammar files, you are allowed to propose a solution that requires some
manual steps (e.g., inspecting model outputs and modifying rules by hand), as long as you
provide clear instructions on how to reproduce your final grammar files from the checkpoints.

* A README.md file describing your method and solution choices.

Meanwhile, we will offer a Kaggle leaderboard (released on February 16 on the course page) for
each task for you to offer some real-time feedback on your submission’s performance on 5% of the
hidden test set.

4 Backgrounds

4.1 Probabilistic Context-Free Grammars (PCFGs)

A PCFG consists of a set of nonterminals A EI terminals ¥, a start symbol S € N, and a set of
production rules R. Each rule r € R has the form A — « with probability p(r), where A € A/ and
a € (N UX)*. For every nonterminal A, the probabilities of rules expanding A sum to 1.

The probability of a parse tree f is the product of its rule probabilities, and the probability of a
string x is the sum over all parse trees that yield x:

P(x)= ). []r()
teT (x) et

where 7 (x) is the set of parse trees that produce x. In this assignment, you will build a PCFG that
places high probability mass on the same strings as the teacher Transformer.

1Preterminals can be viewed as a special type of nonterminals.

2



4.2 Transformer Training

We train a small Transformer language model (using the standard GPT2 architecture) on a large
synthetic corpus generated by the PCFG. We sample 100K strings from the PCFG, and train the
Transformer for 10 epochs with a batch size of 64 using the standard AdamW optimizer and the
negative log probability—based next-token prediction objective. The learning rate is set to 5e-4
with a linear ”warmup’ﬁ over the first 5% of training steps, and a weight decay of 0.0lEI You
are encouraged to explore the training script and understand the training process, although you
are not asked to train any models yourself for this assignment. More detailed hyperparameter
settings can be found by loading the provided checkpoints, and inspect the loaded model’s config
attribute.

5 Tasks

In all tasks, the PCFG will be in its Chomsky Normal Form (CNF)—all nonterminals expands
to either two nonterminals or one terminal—and the start symbol is always S. Throughout this
assignment, there is a set of preterminal nonterminals that only expand to one terminal, and all
other nonterminals only expand to two nonterminals. Your submission needs to be in the Chom-
sky Normal Form as well, that is, every rule in your grammar file should be either of the form
A — BCor A — w,where A, B, C are nonterminals and w is a terminal.

For simplicity, all PCFG rules will have a probability of at least 0.02.

5.1 Task 1 (20 points): Getting Started

Let’s first work with a simple PCFG (PCFG 1) that only contains ten rules (probabilities omitted
here):

S — NP VP
S — NNS VP
NP — DT NNS
VP — V NNS
DT — the
NNS — dogs
NNS — cats
NNS — mice
V — chase
V — like

Your goal is to reconstruct this PCFG from the provided Transformer checkpoint (pcfgl.pt), by
estimating the probabilities of the above rules.

2Warmup is a common neural network training strategy that gradually increases the learning rate from 0 to the
target value over the beginning steps; see https://neurips.cc/virtual/2024/poster/95431

3For more about weight decay, this recent paper offers an interesting view: https://proceedings.neurips.cc/
paper_files/paper/2024/file/29496c942ed6e08ecc469f4521ebfff0-Paper-Conference.pdf


https://neurips.cc/virtual/2024/poster/95431
https://proceedings.neurips.cc/paper_files/paper/2024/file/29496c942ed6e08ecc469f4521ebfff0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/29496c942ed6e08ecc469f4521ebfff0-Paper-Conference.pdf

5.2 Task 2 (50 points): A “Realistic” PCFG

Now let’'s move on to a more realistic PCFG (PCFG 2) that contains 220 rules in total, with 20
nonterminal expansion rules (in the form of A — B C) and 200 preterminal rules (in the form of
A — w).

In this PCFG, the terminals are English words, and the nonterminals are phrase categories
(e.g., noun phrases, determiners, etc.). You may use your knowledge of English syntax to help
you recover the grammar, for example, “cats” and “dogs” are likely to be nouns (and they are,
therefore, of the same category). You may assign whatever symbol you like to the nonterminals,
as long as the internal rules and their probabilities are correctly represented, and the preterminal
rules correctly map the nonterminals to the terminals. As an example, the following two PCFGs
are equivalent and will get the same score, as they only differ in the choice of nonterminal symbols:

(PCFG a)
S— NNSV(p=1)
NNS — dogs(p = 0.5)
NNS — cats(p = 0.5)
V — meows(p = 0.3)
V — barks(p = 0.7)

(PCFG b)
S AB(p=1)
A — dogs(p = 0.5)
A — cats(p = 0.5)
B — meows(p = 0.3)
B — barks(p = 0.7)

Please note that the sentences generated by this PCFG are not necessarily grammatical English
sentences, for example, we do not distinguish plural noun phrases (e.g., “the dogs”) from singular
noun phrases (e.g., “the dog”) in the nonterminals (both falling into the category NP), so there
might be some awkward sentences (e.g., “the dogs meows”) in the training data.

5.3 Task 3 (30 points): A Purely Synthetic PCFG

Now let’s move on to a purely synthetic PCFG (PCFG 3) that contains 26 preterminal rules with
probability 1. Without loss of generality, we can assume these rules are A — a,B — b, ..., Z — z,
where A, B, ..., Z are the preterminal nonterminals and 4, b, ...,z are the terminals. There are ad-
ditionally 50 nonterminal expansion rules (in the form of NT; — NT, NT3) with various prob-
abilities. Your task is to recover the structure and probabilities of the PCFG, without any prior
knowledge about the syntax.

6 Evaluation Metrics

Your submission will be primarily evaluated based on the total variation distance (TVD) between
the distribution of your PCFG and the ground-truth PCFG on a hidden test set of strings, which
will be described in detail below.



In addition, for Tasks 2 onwards, where you need to derive your own PCFG structure, we
will also evaluate the number of rules in your PCFG as a secondary metric, where fewer rules is
considered better. If number of rules is considered as a metric, it will compose 10% of the task
marks.

Total Variation Distance (TVD)

The hidden test set consists of up to 10K unique strings from the ground-truth PCFG (note: they
may or may not overlap with the training set), and your score will be based on the estimated total
variation distance (TVD) between the distribution of your PCFG and the ground-truth PCFG on
the test samples:

TVD(P,Q) = Z|P

where P is the distribution of the ground-truth PCFG, Q is the distribution of your PCFG, and x

is a string in the test set. You might have recognized that TVD is equivalent to the L1 distance

between two distributions, and is always between 0 and 1. Each P(x) and Q(x) will be calculated

by summing over the probabilities of all parse trees that yield x with the inside algorithm.

Your final score will be compared against two baselines:

¢ Uniform PCFG (0-mark baseline for tasks with ground-truth CFG provided, 25% mark baseline
for other tasks): a PCFG with the same structure as the ground-truth PCFG but with uniform
probabilities for all rules expanding the same nonterminal (e.g., for PCFG 1, P(NP — NNS) =
P(NP — DT NNS) = 0.5).

— When uniform PCFG is serving as the 25%-mark baseline, the 0-mark PCFG will be a degen-
erate PCFG that only contains the start symbol S and a single rule S — € where € is an empty
string, which assigns zero probability to all non-empty strings.

¢ Empirical PCFG (100%-mark baseline): we implement a simple, sampling-and-counting-based
method to fit a PCFG from the Transformer.

Your mark will be the interpolation between the baselines based on your TVD score. Here are

three examples:

e Example 1: Suppose the TVD between your PCFG and the ground-truth is 0.1, the TVD of the
uniform PCFG is 0.3 (as a 0-mark baseline), and the TVD of our empirical PCFG is 0.05, then
your mark will be 09'33:0%15 = 80%.

¢ Example 2: Suppose the TVD between your PCFG and the ground-truth is 0.2, the TVD of the
uniform PCFG is 0.3 (as a 25%-mark baseline), and the TVD of our empirical PCFG is 0.05, then
your mark will be 2222 x 75% + 25% = 58.3%.

* Example 3: Suppose the TVD between your PCFG and the ground-truth is 0.4, the TVD of the
uniform PCFG is 0.3 (as a 25%-mark baseline), and the TVD of the zero-mark PCFG is defined
as 1, then your mark will be =03 8§ % 25% = 21.4%.

Bonus Marks

For each of Tasks 2 and 3, if your TVD is better than our empirical PCFG baseline, you will get a
bonus mark of 1 point for every 0.01 improvement in TVD, up to a maximum of 8 bonus points

5



per task (i.e., 16 possible bonus points in total for Tasks 2 and 3).

Number of Rules

W only count the nonterminal expansion rules (in the form of A — B C) for this metric. If your
number of PCFG rules is no more than 150% of the number of rules in the ground-truth PCFG,
you will get the full score for this metric; otherwise, your score will be linearly scaled down to
zero when your number of rules reaches 200% of the number of rules in the ground-truth PCFG.

7 Tips

* Throughout this assignment, a terminal symbol can only be generated by one preterminal.

¢ Start by sampling from the teacher model and looking for obvious structure (e.g., brackets,
separators, recurring patterns).

¢ Training models on your own PCFG might be helpful.



	Overview
	Provided Material
	Submission Format
	Backgrounds
	Probabilistic Context-Free Grammars (PCFGs)
	Transformer Training

	Tasks
	Task 1 (20 points): Getting Started
	Task 2 (50 points): A ``Realistic'' PCFG
	Task 3 (30 points): A Purely Synthetic PCFG

	Evaluation Metrics
	Tips

